Asee peer logo
Displaying results 1 - 30 of 88 in total
Conference Session
Engineering as the STEM Glue
Collection
2011 ASEE Annual Conference & Exposition
Authors
Amy C. Prevost, University of Wisconsin, Madison; Mitchell J. Nathan, University of Wisconsin, Madison; Amy Kathleen Atwood, University of Wisconsin - Madison; L. Allen Phelps, University of Wisconsin-Madison
Tagged Divisions
K-12 & Pre-College Engineering
placed in an orderly fashion and notknotted up in ―spaghetti‖, or that an alarm clock has to work properly on all 7 days of theweek and even one failure would not be acceptable. In the case of this curriculum, thedebugging of circuits is skills-based rather than conceptually based because of this lackof emphasisLastly, we found that most of the material presented in this curriculum is explicitlyintegrated – 77.5% of the time. Due to the nature of the material and the unique subjectmatter, this was not a surprise. No connections were made 17.6% of the time between theengineering and mathematics. Implied connections were made 4.9% of the time.Table 6 illustrates where integration occurred within the skills and concepts included inour analysis
Conference Session
Descriptions of Curricular and Model Development
Collection
2011 ASEE Annual Conference & Exposition
Authors
Morgan M. Hynes, Tufts University; Elsa Head, Tufts University; Ethan E. Danahy, Tufts University
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-732: INTEGRATING NASA SCIENCE AND ENGINEERING: US-ING AN INNOVATIVE SOFTWARE CURRICULUM DELIVERY TOOLTO CREATE A NASA-BASED CURRICULUMMorgan M Hynes, Tufts UniversityElsa Head, Tufts UniversityEthan E Danahy, Tufts University Ethan Danahy received the B.S. and M.S. degrees in Computer Science in 2000 and 2002 respectively, and a Ph.D. degree in Electrical Engineering in 2007, all at Tufts University, Medford, MA. Within the School of Engineering at Tufts University, he is currently a Research Assistant Professor in the Depart- ment of Computer Science. Additionally, he acts as the Engineering Research Program Director at the Center for Engineering Education and Outreach (CEEO), where he manages educational
Conference Session
Certifying Teachers in Engineering or Integrated STEM
Collection
2011 ASEE Annual Conference & Exposition
Authors
Stephen O'Brien, College of New Jersey
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-2099: MATH CURRICULUM IN A SET OF K-5(8) AND K-12STEM PRE-ENGINEERING TEACHER PREPARATION PROGRAMSStephen O’Brien, The College of New Jersey Dr. O’Brien is an Assistant Professor in the Dept. of Technological Studies within the School of Engi- neering at The College of New Jersey. Page 22.1045.1 c American Society for Engineering Education, 2011 Applied Math Curriculum for Elementary and Secondary Integrated STEM teacher preparation programsAbstractIn this paper we describe the mathematical components of integrated Science-Technology-Engineering-Math (STEM) teacher
Conference Session
Certifying Teachers in Engineering or Integrated STEM
Collection
2011 ASEE Annual Conference & Exposition
Authors
AnnMarie Thomas, University of Saint Thomas; Jan B Hansen, University of Saint Thomas; Sarah H. Cohn, Science Museum of Minnesota; Brian Phillip Jensen, University of St. Thomas
Tagged Divisions
K-12 & Pre-College Engineering
been looking for ways to increase theirknowledge of engineering. Additionally, in Minnesota, new Academic Standards inScience have been implemented, as of 2010, which incorporate engineering. As shown byYasar et al., the confidence levels for P-12 teachers with regards to teaching Engineeringare often low1, and thus the mandated inclusion of engineering in the curriculum raisesmany teacher preparation challenges. To address the need for more training of educatorsin engineering, the University of St. Thomas has created an undergraduate minor and agraduate certificate in Engineering Education. The first course in both of these programsis “Fundamentals of Engineering for Educators,” which exposes students to rigorousengineering content from a
Conference Session
Research Related to Learning and Teaching Engineering in Elementary Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
John C. Bedward, North Carolina State University; Eric N. Wiebe, North Carolina State University
Tagged Divisions
K-12 & Pre-College Engineering
participants in a technicalcultural sharing setting 35. Ideally developing consensus as a result of pursuing inquiry-basedinvestigations. Over the course of three months, one urban school was studied, and in particular,one classroom Grade 5 (N=31) where engaged in modeling activities that were a) designedaround a modeling pedagogy, b) leveraged graphic modeling tools to make sense of phenomenaat the microscopic level, c) integrated within their existing curriculum, and d) all within a mixed-ability classroom setting. The teacher was self-selected based on an earlier two-year GraphicallyEnhanced Elementary Science study, where graphic-modeling tools were designed to supportstudent representational practices in their science notebooks. This qualitative
Conference Session
K-12 and Pre-College Engineering Poster Session
Collection
2011 ASEE Annual Conference & Exposition
Authors
Shamsnaz Virani, University of Texas, El Paso; Iris B. Burnham, Burnham Wood Charter School District; Virgilio Gonzalez, University of Texas, El Paso; Miroslava Barua, University of Texas, El Paso; Elaine Fredericksen, Ph.D., University of Texas, El Paso; Sally J. Andrade, Andrade & Associates, Inc., El Paso, TX
Tagged Divisions
K-12 & Pre-College Engineering
educator, curriculum developer and implementer of innovative instructional programs for students of all ages. She has taught English at the University of Texas at El Paso, and in high schools in New York and California public schools. Ms. Burnahm is founder of the School for Educational Enrichment, a private school that is known for customiing instructions for different learning styles. As Founder and Board Memeber of the Texas Alliance of Accredited Private Schools, Ms. Burnham has consulted with and accredited dozens of private schools throughout the Texas. She holds an MA from California State University in Los Angeles and a BA from Hunter College of the City University of New York .Virgilio Gonzalez, The University
Conference Session
Engineering Education Research in K-12
Collection
2011 ASEE Annual Conference & Exposition
Authors
Melissa Dyehouse, Purdue University; Heidi A. Diefes-Dux, Purdue University, West Lafayette; Brenda Capobianco, Purdue University
Tagged Divisions
Educational Research and Methods, K-12 & Pre-College Engineering
P-12 Engineering Research and Learning (INSPIRE). Her P-12 research interests center on the integration of engineering into elementary education.Brenda Capobianco, Purdue University Dr. Brenda Capobianco is an Associate Professor in the Department of Curriculum and Instruction and holds a courtesy appointment in the School of Engineering Education and an affiliated appointment in Women’s Studies at Purdue University. She holds a B.S. in biology from the University of Alaska Fair- banks, M.S in science education from Connecticut Central State University, and Ed.D. from the University of Massachusetts Amherst. Her research interests include girls’ participation in science and engineering; teacher’s engagement in
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
John D. Carpinelli, New Jersey Institute of Technology; Howard S. Kimmel, New Jersey Institute of Technology; Linda S. Hirsch, New Jersey Institute of Technology; Levelle Burr-Alexander, New Jersey Institute of Technology; Kwabena A. Narh, New Jersey Institute of Technology; Rajesh N. Davé, New Jersey Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
-world applications (e.g., pharmaceutical engineering) into their high schoolscience curricula 18. As part of the program teachers developed instructional modules they coulduse to integrate engineering principles into their classroom teaching. The current paper describesan expansion of the project which focuses on helping the teachers refine their instructionalplanning skills while providing them with an effective protocol for developing standards-basedlesson plans.A process was introduced that allowed the development of curriculum modules based on eachteacher’s research. They start with a statement of their research practice and identify areas in thehigh school curricula into which the research best fits, then select specific activities to
Conference Session
Certifying Teachers in Engineering or Integrated STEM
Collection
2011 ASEE Annual Conference & Exposition
Authors
Yvonne Ng, St. Catherine University; Lori R. Maxfield, Saint Catherine University
Tagged Divisions
K-12 & Pre-College Engineering
or non-existent.This paper presents 1) how a basic introduction to engineering course designedfor general education and potential engineering majors was deliberately improvedusing the Parallel Curriculum Model (PCM) to align with eight ABET ProgramOutcomes found in Criterion 3; 2) how PCM was also used to carefully structurethe curriculum to meet the needs of multiple learners (general education students,pre-engineering students, elementary education students); 3) how we structuredthe learning activities and assignments to assess student competence, confidenceand comfort (“the 3C’s”) with engineering, and 4) how the team teaching modelthat includes an engineering and education faculty member provides enhancedopportunities to use innovative
Conference Session
Certifying Teachers in Engineering or Integrated STEM
Collection
2011 ASEE Annual Conference & Exposition
Authors
Stephen O'Brien, College of New Jersey; Suriza VanderSandt, College of New Jersey; Elizabeth Dianne Johnson, College of New Jersey
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1391: MATH ANXIETY AND TEACHING BELIEFS OF A K-5(8) INTEGRATED-STEM MAJOR COMPARED TO OTHER TEACHERPREPARATION MAJORSStephen O’Brien, The College of New Jersey Dr. O’Brien is an Assistant Professor in the Dept. of Technological Studies within the School of Engi- neering at The College of New Jersey (TCNJ).Dr. Suriza VanderSandt, The College of New Jersey Research Interest: Dr. Van der Sandt conducts research in the broad area of pre-service mathematics teacher education. Her research interests include geometry teaching and learning, focusing on spatial orientation and spatial insight. More recently she has also conducted research on factors influencing teaching and learning of pre-service mathematics
Conference Session
High School Engineering Programs, Curriculum, and Evaluation
Collection
2011 ASEE Annual Conference & Exposition
Authors
David R. Shields P.E., University of Nevada, Las Vegas; Krishna Prasad Kisi, University of Nevada Las Vegas
Tagged Divisions
K-12 & Pre-College Engineering
and a project engineer. Page 22.704.1 c American Society for Engineering Education, 2011 Factors Influencing High School Students to Pursue an Engineering BaccalaureateIntroductionIn the twenty-first century, students have myriad curricula that may be pursued in high schools.Curricula at specialized high schools have been developed for very specific areas of study whencompared to the curricula at most comprehensive high schools. At comprehensive high schools,a general program of study is offered either in a college-preparatory curriculum orgeneral/vocational
Conference Session
Engineering Education Research in K-12
Collection
2011 ASEE Annual Conference & Exposition
Authors
Brenda M. Capobianco, Purdue University; Heidi A. Diefes-Dux, Purdue University, West Lafayette; Irene B. Mena, Purdue University, West Lafayette
Tagged Divisions
Educational Research and Methods, K-12 & Pre-College Engineering
: Transformation or assimilation?Purpose of the study and research questionsThe aim of this study is to examine how elementary school teachers translate what they learnedfrom using the Engineering is Elementary (EiE) curriculum. The research questions include thefollowing: 1) What are the teachers‟ first steps in developing engineering design-based sciencelessons? 2) What are the teachers‟ actual attempts at integrating the engineering design process?3) How can we characterize teachers‟ attempts? The context of this research study is auniversity-based initiative focused on creating an engineering literate society throughpreeminence in P-12 engineering education research and scholarship.Theoretical frameworkCentral to this study is the work of teachers
Conference Session
Computer Science and Information Technology in K-12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Ethan E. Danahy, Tufts University, Center for Engineering Education and Outreach; Ashley Russell, Tufts University, Center for Engineering Education and Outreach
Tagged Divisions
K-12 & Pre-College Engineering
for assisting teachers with performing engineering education and communicating robotics concepts to students spanning the K-12 through university age range.Ashley Russell, CEEO Page 22.859.1 c American Society for Engineering Education, 2011 Improving STEM Learning through Accessible RoboBooksAbstractIn this study the researchers conducted an inclusive and iterative design protocol in orderto develop an accessible, interactive engineering curriculum delivery tool and promoteequitable learning opportunities for students with learning and cognitive disabilities. Thesoftware interface is utilized
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
John C. Bedward, North Carolina State University; Eric N. Wiebe, North Carolina State University; Lauren Madden, North Carolina State University
Tagged Divisions
K-12 & Pre-College Engineering
research education, scientific and technical visualization, multimodal literacy, learning objects and cognition.Eric N. Wiebe, North Carolina State University ERIC N. WIEBE, Ph.D. Dr. Wiebe is an Associate Professor in the Department of STEM Education at NC State University and Senior Research Fellow at the Friday Institute for Educational Innovation. A focus of his research and outreach work has been the integration of multimedia and multimodal teaching and learning approaches in STEM instruction. He has also worked on research and evaluation of technology integration in instructional settings in both secondary and post-secondary education. Dr. Wiebe has been a member of ASEE since 1989.Lauren Madden, North Carolina
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Chelsey Simmons, Stanford University; Beth L Pruitt, Stanford University; Kaye Storm, Stanford University; Gary Lichtenstein
Tagged Divisions
K-12 & Pre-College Engineering
promote their inclusion in secondary classrooms and curriculum.1) Do you feel the professional practices of a) analyzing and synthesizing research literature, b)utilizing interpersonal skills and collaboration, and c) synthesizing data and presenting resultsare important to include in your middle school or high school curriculum? Why or why not?2) What factors (curriculum, policy, your background, student ability, etc.) would affectinclusion of these professional practices in your curriculum?3) Are there additional professional practices that you feel are important to include in yourcurriculum that are not addressed above?You can respond to these questions one by one, or integrate your responses in a single paper
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Nancy Healy, Georgia Institute of Technology; Joyce Palmer Allen, National Nanotechnology Infrastructure Network
Tagged Divisions
K-12 & Pre-College Engineering
fit intoa standards-based science curriculum that is already taught in middle and high school classrooms(physical science, physics, chemistry, and biology). Additional components of the programinclude why students should learn about nanoscale science and engineering (workforcedevelopment) and how it is an interdisciplinary field which helps students understand theinterconnections between the sciences and engineering.IntroductionNanoscale science and engineering (NSE) is viewed by many as the next great technicalrevolution. Evidence for this belief in the U.S. is the establishment of the NationalNanotechnology Initiative (NNI) and the nearly quadrupling of its budget since its inception in2001 from $464 million to nearly $1.8 billion in 20102
Conference Session
Core Concepts, Standards, and Policy in K-12 Engineering Education
Collection
2011 ASEE Annual Conference & Exposition
Authors
Mike Ryan, Georgia Institute of Technology; Brian D. Gane, Georgia Institute of Technology; Marion Usselman, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1052: COMPARISON OF TWO CURRICULUM MODELS FORMAPPING ENGINEERING CORE CONCEPTS TO EXISTING SCIENCEAND MATHEMATICS STANDARDSMike Ryan, CEISMC - Georgia TechBrian D. Gane, Georgia Institute of Technology Brian Gane is a Ph.D. candidate in the School of Psychology at Georgia Tech and a research assistant at CEISMC. His research focuses on skill acquisition and instructional design.Marion Usselman, Georgia Institute of Technology Marion Usselman is Associate Director for Federal Outreach and Research for Georgia Tech’s Center for Education Integrating Science, Mathematics and Computing. She has been with CEISMC since 1996 managing programs, interacting with K-12 schools, and assisting Georgia Tech faculty in
Conference Session
High School Engineering Programs, Curriculum, and Evaluation
Collection
2011 ASEE Annual Conference & Exposition
Authors
James C. Baygents, University of Arizona; Jeffrey B. Goldberg, University of Arizona; Jane Hunter, University of Arizona
Tagged Divisions
K-12 & Pre-College Engineering
will lead to increased numbers of engineeringstudents in the COE and the State, and would be: • effective at increasing student self efficacy for engineering which has been shown to be critical for eventual enrollment and retention in engineering programs,2 • effective at increasing the interest of high quality students in pursuing an engineering degree and this will lead to larger enrollment in schools across the country.There are no nationwide AP Engineering courses for a variety of reasons including: • There is no standardized nationwide “intro to engineering” curriculum or common education learning outcome standards. Each University has a different class with different outcomes and objectives. • There is
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Tirupalavanam G. Ganesh, Arizona State University; Lisa Stapley Randall, Arizona State University; Johnny Thieken, Arizona State University
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1905: DESIGNING AND TESTING WATER FILTRATION DE-VICES USING THE ENGINEERING DESIGN PROCESS: A DESCRIP-TION OF AN EIGHTH GRADE CURRICULAR UNIT ON BIOREMEDI-ATIONTirupalavanam G. Ganesh, Arizona State University Tirupalavanam G. Ganesh is Assistant Professor of Engineering Education at Arizona State University’s Ira A. Fulton Schools of Engineering. He has bachelors and masters degrees in Computer Science and Engineering and a PhD in Curriculum and Instruction. His research interests include educational research methods, communication of research, and k-16+ engineering education. Ganesh’s research is largely focused on studying k-12 curricula, and teaching-learning processes in both the formal and informal
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Van Stephen Blackwood, Colorado School Of Mines, GK-12 NSF Fellow; Barbara M. Moskal, Colorado School of Mines
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1294: CURRICULAR EXCHANGE BETWEEN A STEM UNI-VERSITY AND A RURAL ELEMENTARY SCHOOL: THE ESTABLISH-MENT OF AN INTERACTIVE VIDEO LINKVan Stephen Blackwood, GK-12 Colorado School Of Mines GK-12 NSF Fellow I am a mechanical engineering graduate student at Colorado School of Mines. I am funded by National Science Foundation GK-12 teaching fellowship. I research chemically reacting flow with respect to hy- drogen/nitrous oxide combustion chemistry.Barbara M. Moskal, Colorado School of Mines Barbara Moskal received her Ed.D. in Mathematics Education from the University of Pittsburgh. She is a Professor of Mathematical and Computer Sciences, the Interim Director of the Trefny Institute for Educational Innovation
Conference Session
Extending a Hand Back: Older Students Inspiring Younger Students
Collection
2011 ASEE Annual Conference & Exposition
Authors
Sunni H. Newton, Georgia Institute of Technology; Tristan T. Utschig, Georgia Institute of Technology; Donna C. Llewellyn, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
Lead the Way, apre-college engineering curriculum program, which has been adopted by over 10% of highschool and is used in all 50 states15. The goal of this program is to integrate STEM content intothe program of study for middle and high school students. Seven courses are offered through thisprogram at the high school level, some of which can be used to earn college credit. Teachers ofPLTW courses must go through professional development and training in project-based andproblem-based instruction. In a study comparing the beliefs of PLTW teachers with regular mathand science teachers, PLTW teachers were more likely to identify support for engineering intheir schools, were less likely to believe that a successful engineer must be a high
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Zachary Vonder Haar, University of Maryland, Baltimore County; Taryn Melkus Bayles, University of Maryland, Baltimore County; Julia M. Ross, University of Maryland, Baltimore County
Tagged Divisions
K-12 & Pre-College Engineering
., is a Professor of the Practice of Chemical Engineering in the Chemical and Bio- chemical Engineering Department at UMBC, where she incorporates her industrial experience by bringing practical examples and interactive learning to help students understand fundamental engineering princi- ples. Her current research focuses on engineering education, outreach and curriculum development.Dr. Julia M. Ross, University of Maryland, Baltimore County Page 22.594.1 c American Society for Engineering Education, 2011 Engineering in Healthcare: A Heart Lung SystemAbstract INSPIRES is an
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Amy E. Landis, University of Pittsburgh; Christian D. Schunn, University of Pittsburgh; Monica Christine Rothermel, University of Pittsburgh; Scott Shrake, University of Pittsburgh; Briana Niblick, University of Pittsburgh
Tagged Divisions
K-12 & Pre-College Engineering
with reduced functional capabilities due toaging or disability. Research projects range from the design of sustainable and potable watertreatment technologies to the design of an anatomically correct hand.The RET at Pitt includes four major components: 1) curriculum development for Pittsburgh areahigh school teachers during an intensive summer experience, 2) teacher implementation of newengineering design units into their courses, 3) an annual design competition where the teachers’students present their projects, and 4) high school student internships in university research labs.A snapshot of the Pitt RET program’s longitudinal timeline is shown in Figure 1. The processbegins in February, when we start recruiting 8-9 new teachers into the
Conference Session
Broadening Participation of Minority Students in and with K-12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Zhao Chad Kong; Angie Martiza Bautista-Chavez, Rice University; Andres J Goza, Rice University; Rachel Jackson, Rice University; Kurt Kienast, Rice University; Sam Oke; Juan A Castilleja, The Boeing Company; Brent C Houchens, Rice University
Tagged Divisions
K-12 & Pre-College Engineering, Minorities in Engineering
22.814.3on anecdotal evidence from teacher feedback to improve students’ understanding of fundamentalengineering concepts8,9,10. The Integrated Teaching and Learning (ITL) Program at theUniversity of Colorado at Boulder developed a Creative Engineering course for students at anearby high school. This course focused on hands-on design based engineering in conjunctionwith the high school curriculum and demonstrated that students had increased confidence in theuse of engineering methods to solve problems11.Research on learning styles reflects the positive impact of integrating kinesthetic learningenvironments with traditional learning structures. A recent study showed that learning is aconglomeration of a variety of interactions12. The results
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Muhittin Yilmaz, Texas A&M University, Kingsville; Carlos A. Garcia, Texas A&M University, Kingsville; Tamara D. Guillen, Texas A&M University, Kingsville; David Ramirez, Texas A&M University, Kingsville
Tagged Divisions
K-12 & Pre-College Engineering
infusion to high schools was to adopt the university-developed research course template for high school research activities14. A summer researchexperience camp involved junior and senior high school students for only science disciplines butoffered a chance to earn one semester hour of college credit and reported to establish a studentpipeline for many undergraduate programs nationwide15. Another activity offered a six-weekresidential summer research camp only for sophomores and juniors in high schools, focused onbiological, agricultural, environmental, and natural sciences and required a fee and anexpectation of a scientific report16. Also, a no-fee summer camp offered a variety of engineeringresearch topics in an eight-week session but the camp
Conference Session
Research and Models for Professional Development
Collection
2011 ASEE Annual Conference & Exposition
Authors
Cher C. Hendricks, Georgia Institute of Technology; Barbara Burks Fasse, Georgia Institute of Technology; Donna C. Llewellyn, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
onthe types of support and professional development needed to adequately prepare teachers todeliver the new curriculum. The SLIDER Fellows are an integral part of this professionaldevelopment, spending one day each week in a classroom with the SLIDER teacher, and so it isessential to determine the Fellows’ impact on curriculum implementation and teacherdevelopment. Our purpose in studying factors such as power distribution, ways teachers andFellows interact, and interdependence is to discover ways to leverage positive aspects of theteacher-Fellow relationship and identify and improve any difficulties so Fellows will have thegreatest impact possible in the classroom, both in their interactions with students and withteachers.Fellows Programs
Conference Session
Engineering Professional Development for K-12 Teachers
Collection
2011 ASEE Annual Conference & Exposition
Authors
Hui-Hui Wang, University of Minnesota; Tamara J Moore, University of Minnesota, Twin Cities; Gillian Roehrig, University of Minnesota; Mi Sun Park, University of Minnesota, Twin Cities
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-2077: THE IMPACT OF PROFESSIONAL DEVELOPMENT ONTEACHERS INTEGRATING ENGINEERING INTO SCIENCE AND MATH-EMATICS CLASSROOMHui-Hui Wang, University of Minnesota Hui-Hui Wang is a graduate student in Science Education in the Department of Curriculum and Instruction at the University of Minnesota. Her research interests are across both non-formal and formal setting. Her research primary relates to inquiry-based instruction and STEM integration in science education. She is also interested in developing STEM curriculum for K-12 science teachers.Tamara J Moore, University of Minnesota, Twin Cities Tamara J. Moore is the co-director of the University of Minnesota’s STEM Education Center and an assistant professor of
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Victor Mejia, California State University, Los Angeles; Jessica Alvarenga, California State University, Los Angeles; Jianyu Dong, California State University, Los Angeles; Huiping Guo, California State University, Los Angeles; Israel Hernandez, California State University, Los Angeles; Eun-Young Kang; Phanit Pollavith; Adriana Trejo, Roosevelt High School; Nancy Warter-Perez, California State University, Los Angeles
Tagged Divisions
K-12 & Pre-College Engineering
objectswith occlusions in high-resolution video sequences. Rather than focus on a specific type ofobject,6 this research covers general moving objects. Furthermore, most of current algorithmsalso assume a stationary camera in which the background can be learned over a long period oftime and usually consists of tracking objects in a very low-resolution video sequence.7 Thisresearch does not require learning the background and focuses in tracking multiple movingobjects in high-resolution video. The proposed object tracking will be integrated during thedecoding stage of the H.264 compression,8 the current state-of-the-art compression standard, inorder to take advantage of its robust motion estimation, a really useful feature which provides uswith an
Conference Session
Robot Mania!
Collection
2011 ASEE Annual Conference & Exposition
Authors
Araceli Martinez Ortiz, Texas Higher Education Coordinating Board
Tagged Divisions
K-12 & Pre-College Engineering
asking their own questions and designing experimentsto solve problems. They also call for students to make physical system models that demonstratetheir learning and understanding.33 K-12 engineering education may facilitate meeting theseobjectives and efforts have already resulted in novel curricular approaches that have formallystructured activities and learning objectives around state curricular standards in mathematicsand/or science.5,7,14Nevertheless, the inclusion of an engineering education curricular program in U.S. schools hasraised questions among researchers and teachers regarding the specific content to be taught aswell as the process for integrating this additional subject area into an already ambitious K-12school curriculum. In the
Conference Session
Middle School Engineering Programs, Curriculum, and Evaluation
Collection
2011 ASEE Annual Conference & Exposition
Authors
Jacob D. Joseph, The College of William and Mary; Jessica Taylor, College of William and Mary, STEM Education Alliance; Gail B. Hardinge, College of William and Mary, STEM Education Alliance; Eugene F. Brown, Virginia Tech
Tagged Divisions
K-12 & Pre-College Engineering
, the intention of theVDP is to inspire students to become the next generation of scientists and engineers.The VDP consists of Academic Year, Summer Academy, and National Outreach programs.Academic Year Program—The VDP’s Academic Year Program is an inclusive, in-classinitiative involving approximately thirty contact hours. Teachers and S&Es collaborate on thedelivery of a high-energy curriculum, R2: Relevant Robotics, designed to leverage the efficacy ofresearch-based educational techniques, developed around a Five Strands of STEM Instructionmodel. The R2: Relevant Robotics curriculum consists of two units, “Crisis at a Coral Reef” and“Landmines,” both of which are correlated to national math and science standards. Informationabout the