-based research topics as students are into the second year of their research projects. Thecurriculum will introduce students to practices in many areas of engineering and relateddisciplines. During the course, students apply programming and electronics knowledge to theRaspberry Pi computer and interface with a variety of sensors for real world data collection, suchas wireless water quality sensors. Students can also use robotics platforms for understandingbasic concepts in kinetics, control, programming, and intelligent systems. Other projects arerelated to the design and development of floating platforms and turbines for offshore windenergy. While the aim of this course is on integrating general engineering practices with scienceconcepts, we
Page 26.894.8Findings section of this paper show results indicating that YSP students showed highlysignificant gains in all areas examined: 1) Fundamentals of neuroscience, engineering, andneuroethics research, 2) Neural engineering best practices, and 3) Connections to neuralengineering industry and careers.Post-program Reflective SurveysAn end-of-program survey was given to YSP students at the conclusion of each summer programto measure the impact on students’ content knowledge and skill set competency in areas ofneural engineering. A retrospective pre-test design was used on some survey questions todetermine if there were statistically significant differences in knowledge of neural engineeringskill sets.13 Considerable empirical evidence
Jacobs Excellence in Education Award, 2002 Jacobs Innovation Grant, 2003 Distinguished Teacher Award, and 2012 Inaugural Distinguished Award for Excellence in the cate- gory Inspiration through Leadership. Moreover, he is a recipient of 2014-2015 University Distinguished Teaching Award at NYU. In 2004, he was selected for a three-year term as a Senior Faculty Fellow of NYU-SoE’s Othmer Institute for Interdisciplinary Studies. His scholarly activities have included 3 edited books, 7 chapters in edited books, 1 book review, 55 journal articles, and 109 conference papers. He has mentored 1 B.S., 16 M.S., and 4 Ph.D. thesis students; 31 undergraduate research students and 11 under- graduate senior design project teams
. With expertise in the design of PD and learning communities, Beth leads a collaboration with educators as co-PI on an NSF K12 engineering education project. She is the 2014 Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education Massachusetts Professor of the Year.Ms. Isabel Huff, Springfield Technical Community College After participating in the instructional design of Through My Window during her four years as an un- dergraduate, Isabel is thrilled to be working full-time as the outreach coordinator. She graduated summa cum laude from Smith College with a double major in Economics and Spanish in Spring 2014 and now works on the Springfield Technical
between science and technology, and understand or apply the engineering designprocess, recognizing design constraints and trade-offs of each design.8 Unfortunately, thereexists a lack of access to adequate resources – including qualified STEM teachers.9According to the National Science Board (NSB), teacher quality is one of the most importantfactors that influence student learning, and ongoing professional development is one of thefactors that affect teacher quality. The NSB cited work done by researchers Boyd, et al.;10Clotfelter, Ladd, and Vigdor;11 Goe;12 Guarino, Santibanez, and Daley;13 Hanushek;14 and Harrisand Sass15 that corroborates the positive impact that high-quality teaching has on student
Science Achievers, and ACS Project SEED. She’s been invited back do pharmaceutical engineering research with Research Experience for Teachers at NJIT every summer for the last 8 years now, with her Project SEED students. In 2008 one of her research students became a Science Talent Search Finalist. He also won best in category awards at the Intel International Science and Engineering Fair two years in a row. In 2010 she was named a Society for Science and the Public Teacher Fellow, and served on the Advisory Council for Intel ISEF since 2012. Marie currently teaches three levels of engineering courses, that she designed, and coaches students doing science research projects for competitions.Dr. Howard S. Kimmel, New Jersey
matter knowledge of student participants is also discussed. The paper further highlightsbest practices that have been developed at the STEM Institute host college to assist otherinstitutions in developing a similar program to increase subject matter knowledge as well asinterest and self-efficacy in STEM.1. IntroductionIncreasingly publications describe our nation’s compelling need for “home-grown” STEMprofessionals while at the same time condemn the lack of preparedness of most graduates forthese jobs. Experts are also concerned that that the aging workforce and a reduced labor poolwill impact professionals available for the federal STEM workforce.1 Moreover, despite high
reform effort risks being undermined by the curricular and cultural practices thatpervasively shape student experience and outcomes and drive away too many could-be engineerswith diverse interests, aptitudes, lived experiences, and values.PDI’s response to the bait-and-switch problem employs design-oriented logics of engagement inparallel with the fundamentals-first approach, which provides a partial corrective to the logic ofexclusion. This configuration offers educators new avenues for thinking about explicit andimplicit connections between the design-centric emphasis in K-12 and the content-driven modelof fundamentals first. Moving forward, we hope to conduct empirical research using participantobservation and interviews to compare students
Paper ID #13238Changes in Latino/a Adolescents’ Engineering Self-efficacy and Perceptionsof Engineering After Addressing Authentic Engineering Design ChallengesDr. Joel Alejandro Mejia, West Virginia University Joel Alejandro Mejia is an Assistant Professor of Engineering Education at West Virginia University. He is interested in research regarding underrepresentation of minority groups in Science, Technology, Engi- neering, and Mathematics (STEM), especially the use of culturally responsive practices in engineering education. He is particularly interested in the use of comprehension strategy instruction in linguistically
University at Qatar has been recognized as one of the leading institutions offering engineering degrees in the region. The campus has attracted over 85 full-‐time faculty members representing some of the best minds in engineering education and scholarship. STEM Education The State of Qatar has long acknowledged the intrinsic value of science, technology, engineering and mathematics (STEM) for empowering upcoming Qatari talent and to transform this fast-‐growing country into a world-‐class research and discovery icon in the region. Further, Qatar’s efforts to nationalize its energy workforce and reduce dependence on foreign workers creates an
Paper ID #13613Engineering students teaching hands on engineering design challenges to un-derserved community familiesDr. Amy Hee Kim, Iridescent Amy Kim is the Sr. Director of Content Development at Iridescent, a science and engineering education nonprofit. She is trained in physical chemistry (Ph.D. University of Chicago) with a strong passion for improving STEM education in informal settings. In graduate school, she chose to pursue a career path where scientists can give back to their communities. She was a science policy fellow at the National Academy of Sciences where she learned how to effectively communicate
do, it isimportant that they are aware of engineering and are open to future possibilities for themselveswith engineering. Page 26.760.13Bibliography[1] Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of research in science teaching, 37(9), 963-980.[2] Guskey, T. R., & Yoon, K. S. (2009). What works in professional development. Phi delta kappan, 90(7), 495- 500.[3] Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations
inclusion of arts and design in the move to STEAM can be thought of as a natural extensionof STEM as design consideration are often crucial import in the building of technologies andsystems. Not only do the branches of STEAM complement one another in practice, they supporta holistic view of knowledge creation. For example, research on project-based learning such asLearning by Design (LBD) has demonstrated that design considerations assist in overall scienceliteracy for complex systems16. The multi-disciplinary focus in STEAM education should notonly be thought of on the instrumental level, however. Another crucial aspect of the STEAMframework is the creation of more openings for exploration and discovery among youth. Whenscientific and technical
successful with mentors. Takaghaj2 described the impact of mentoring girls in STEM.Feldhaus3 describes a mentoring program, which involves under-represented mentors. Sarder4discusses the impact of a mentor in designing K12 curriculum. Rochefort5 describes a programthat used graduate students as mentors. Mentoring has been attempted in many places for a singleprogram. This paper describes an effort, which strives to increase the number of STEM mentorsacross many programs in a single community.The Wichita Coalition is comprised of individuals and organizations that are passionate about thefuture of our community. Wichita has a high concentration of STEM professionals (the 3rdhighest concentration of engineers in the nation, according to Forbes). In