weaponry—even as a point of discussion—isapparently outside the scope of the course, despite evident student curiosity and the seeminglylogical connection of nuclear weaponry to the course theme (including the pervasiveness ofengineering careers directly or indirectly connected to the military sector [22]). The topic ofnuclear weaponry repeatedly goes unaddressed, and students repeatedly seek to bring it up. Thisdimension of HC includes those topics notably absent from the formal curriculum, notableespecially when their inclusion would seem to be reasonable or even likely. A third implicitlesson extends the second and is conveyed by the quality of interaction between students andfaculty participants, or at least how the quality of that interaction
Paper ID #32355Penalized for Excellence: The Invisible Hand of Career-TrackStratificationDr. Cindy Rottmann, University of Toronto Cindy Rottmann is the Associate Director of Research at the Troost Institute for Leadership Education in Engineering, University of Toronto. Her research interests include engineering leadership in university and workplace settings as well as ethics and equity in engineering education.Dr. Emily Moore P.Eng., University of Toronto Emily Moore is the Director of the Troost Institute for Leadership Education in Engineering (Troost ILead) at the University of Toronto. Emily spent 20 years as a
Paper ID #34914Using a Values Lens to Examine Engineers’ Workplace ExperiencesDr. Samantha Ruth Brunhaver, Arizona State University Samantha Brunhaver is an Assistant Professor of Engineering in the Fulton Schools of Engineering Poly- technic School. Dr. Brunhaver recently joined Arizona State after completing her M.S. and Ph.D. in Mechanical Engineering at Stanford University. She also has a B.S. in Mechanical Engineering from Northeastern University. Dr. Brunhaver’s research examines the career decision-making and professional identity formation of engineering students, alumni, and practicing engineers. She also
work (average 8.4, Table 2), but perhaps this wasdue to other courses that they had taken rather than the senior-level engineering professionalismand ethics course. I2 required multiple ethics courses outside engineering that were taken earlierin their undergraduate careers, and perhaps those courses were viewed as being more helpful. Inaddition, the I2 course was new (in first to third iterations) and the alumni who responded to thesurvey had only worked for about 1 year after graduating. The short time in-practice was notatypical compared to alumni respondents from institutions I3, I6, and I7. The exemplarinstructors from I1, I3, I6, I7 did appear to have more established courses. More information isneeded to understand this difference; with
Paper ID #6832Implementing a Student-Suggested Course in Engineering Career Develop-mentDr. Julie E. Sharp, Vanderbilt University Dr. Julie E. Sharp, M.A.T., M.A., Ph.D., is Professor of the Practice of Technical Communications in the Vanderbilt University School of Engineering, where she teaches written and oral communication courses in the Department of Chemical and Biomolecular Engineering and the General Engineering Division. Her teaching and research interests include job search communication, learning styles, and integrating com- munication in engineering courses. In 2012, she won an Apex Award for Excellence in
the main focus of this polytechnic institute?The institute that is home to Idol focuses primarily on preparing students for successful careers,and most often hires instructors who bring prior industry experience to their teaching positionsalong with their academic credentials. Industry involvement with instructors, course materials,and collaboration with student projects is common and encouraged, so students get firsthandexperience with workplace standards and practices.For students, assignments and extracurricular activities that have clear links to their futureworking life make their courses more meaningful to them and more practical for the workplace.For instructors, this system demands time in keeping up to date on current industry
extent that fourth year engineering students discuss helpingothers and society through their careers as an aspect of an ideal job or an aspect that would maketheir work rewarding. Hour-long, semi-structured interviews were conducted with twentyengineering undergraduate students near the end of their fourth year of college. These studentswere attending five different universities and pursuing six different majors (primarily mechanicaland civil engineering). Student responses, while unique to their personal situation, fell into fourcategories regarding their visions for a future ideal engineering career: (A) helping people andsociety was the most important component to their future engineering career; (B) helping peopleand improving society was
Paper ID #21891Exploring Students’ and Instructors’ Perceptions of Engineering: Case Stud-ies of Professionally Focused and Career Exploration CoursesDr. Idalis Villanueva, Utah State University Dr. Villanueva is an Assistant Professor in the Engineering Education Department and an Adjunct Pro- fessor in the Bioengineering Department in Utah State University. Her multiple roles as an engineer, engineering educator, engineering educational researcher, and professional development mentor for un- derrepresented populations has aided her in the design and integration of educational and physiological technologies to research
Committee. Page 22.1456.1 c American Society for Engineering Education, 2011 Myths of Race and Gender: The Engineering “Pipeline” Metaphor and the Careers of Female Deans of EngineeringIntroductionWho does engineering is important, since engineers are key contributors to the design oftechnologies that shape our world.1 While women have made significant gains in their proportionof degrees earned and their representation in the professoriate in the past 30 years, they remainsignificantly underrepresented in engineering.2 In 2009, women earned just 17.8% of the 74,387bachelor’s degrees awarded in
Paper ID #33676Before Engineering: How do students consider social and technicaldimensions when solving complex problems early in their academicengineering career?Dr. Desen Sevi Ozkan, Tufts University Desen is a postdoctoral researcher in the Tufts Center for Engineering Education Outreach and the Insti- tute for Research on Learning and Instruction. She holds a Ph.D. in engineering education from Virginia Tech and a B.S. in Chemical Engineering from Tufts University. Her research interests are focused on in- terdisciplinary curriculum development in engineering education and the political, economic, and societal
Paper ID #27210”I Wish I Could Do More”: A Qualitative Meta-analysis of Early Career En-gineers’ Perceptions of Agency in their WorkplacesDr. Benjamin David Lutz, California Polytechnic State University, San Luis Obispo Ben Lutz is an Assistant Professor of Mechanical Engineering Design at Cal Poly San Luis Obispo. His research interests include innovative pedagogies in engineering design, conceptual change and develop- ment, school-to-work transitions for new engineers, and efforts for inclusion and diversity within engi- neering. His current work explores how students describe their own learning in engineering design and
Paper ID #30819Program: Study DesignMs. Rebecca Balakrishnan, University of Manitoba I am a career development professional with 8 years of experience working with post-secondary students at University of Manitoba on all aspects of career exploration, planning and job search. This takes a variety of forms, including one-on-one appointments, facilitating workshops, and writing resources. Recently, as part of my Master of Education in Counselling Psychology thesis, I have collaborated with faculty in the Faculty of Engineering to integrate career development activities into the Biosystems Engineering curriculum.Dr
research examines the career decision-making and professional identity formation of engineering students, alumni, and practicing engineers. She also conducts studies of new engineering pedagogy that help to improve student engagement and understanding. c American Society for Engineering Education, 2020 Investigating the relationship between self-efficacy and perceived importance of communication skills among engineering studentsIntroductionCommunication skills are critical for engineers to succeed in the workforce. Research on theskills that engineering graduates use in professional practice supports this idea [1-5], with onestudy even concluding that “technical abilities are a given, [whereas
Learning Sciences from Northwestern University. His research interests include learning in informal settings and public engagement with science.Prof. Reed Stevens, Northwestern University Reed Stevens is a Professor of Learning Sciences at Northwestern University. He holds a B.A. in Mathe- matics from Pomona College and PhD in Cognition and Development from the University of California, Berkeley. Professor Stevens began his professional career as a mathematics teacher. For the past two decades, he has studied STEM learning both in and out of school. His research seeks to understand how and when learning environments are productive for people and to translate those findings into practical use in the design and resdesign
climate change effects their motivations and agency to solve complex global problems for a sustainability in their career.Dr. Allison Godwin, Purdue University, West Lafayette Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. She is the recipient of a 2014 American Society for Engineering
called the Engineering Ambassadors to relay these messages in freshmen levelcourses, is to impact student perceptions of engineering and to provide information to studentsthat will be critical in making career decisions.In the Fall of 2011, a pilot program was launched in two sections of a Chemical EngineeringFirst Year Seminar. Engineering Ambassadors made four separate visits to each section,focusing on the following topics: 1) An overview of College of Engineering Majors, 2) Optionswithin Chemical Engineering, 3) Student experiences in the College of Engineering, and 4) Howto be a successful engineering student. Woven through each presentation were themes fromChanging the Conversation, focusing on how engineers are essential to health
activities promote inclusive excellence through collaboration.Dr. Karin Jensen, University of Illinois at Urbana - Champaign Karin Jensen, Ph.D. is a Teaching Assistant Professor in bioengineering at the University of Illinois Urbana-Champaign. Her research interests include student mental health and wellness, engineering stu- dent career pathways, and engagement of engineering faculty in engineering education research. She was awarded a CAREER award from the National Science Foundation for her research on undergraduate mental health in engineering programs. Before joining UIUC she completed a post-doctoral fellowship at Sanofi Oncology in Cambridge, MA. She earned a bachelor’s degree in biological engineering from
Engineering (RIFE) group, whose projects are described at the group’s website, http://feministengineering.org/. She is interested in creating new models for thinking about gender and race in the context of engineering education. She was recently awarded a CAREER grant for the project, ”Learning from Small Numbers: Using personal narratives by underrepresented undergraduate students to promote institutional change in engineering education.”Jordana Hoegh, Purdue University Jordana Hoegh, M.S., is a doctoral student in the Department of Sociology at Purdue University. Her research interests include early adult life course and transitions, self and identity, sociology of the family, work and organizations, and social networks
Diego Mark Peters received a Bachelors degree in Economics from Georgetown University and then pursued a business career in New York City, working in many of the major business disciplines. Over the past twenty years, Mark has worked and consulted for large corporations, professional organizations, hospitals, churches, and universities. Dr. Peters earned a Masters Degree from the Boston College School of Theology and Ministry and a Ph.D. in Leadership Studies from the University of San Diego. He has taught in a variety of disciplines including: Business Management, Organizational Leadership, Economics, Ethics, and Leadership Stud- ies, at the undergraduate and graduate levels. Dr. Peters has twice served on the
. Increasing the interest of students in the STEM field will present the growingneed for engineers as a necessary change to sustain the increasing demand for infrastructure,houses, businesses, energy, water, and infrastructure.In a 2008 report, a public high school authority in the U.S. discovered an extremely low level ofinterest for participating in STEM-related career academics in high school among middle schoolstudents; however, the students showed higher interests in arts, literatures, businesses, andentertainment-related careers, especially the females who make up only 25% of the STEM jobs[3], [4]. Recently, a 2018 research conducted on behalf of Junior Achievement and Ernst &Young LLP (EY) revealed a significant drop. Only 24% of boys were
University. His research interests include learning in informal settings and public engagement with science.Prof. Reed Stevens, Northwestern University Reed Stevens is a Professor of Learning Sciences at Northwestern University. He holds a B.A. in Mathe- matics from Pomona College and PhD in Cognition and Development from the University of California, Berkeley. Professor Stevens began his professional career as a mathematics teacher. For the past two decades, he has studied STEM learning both in and out of school. His research seeks to understand how and when learning environments are productive for people and to translate those findings into practical use in the design and resdesign of learning environments. In recent
holds a B.A. in Mathe- matics from Pomona College and PhD in Cognition and Development from the University of California, Berkeley. Professor Stevens began his professional career as a mathematics teacher. For the past two decades, he has studied STEM learning both in and out of school. His research seeks to understand how and when learning environments are productive for people and to translate those findings into practical use in the design and resdesign of learning environments. In recent years and in collaboration with colleagues at Northwestern, he created FUSE Studios to reimagine STEAM education around the values of innova- tion, making, and collaboration (https://www.fusestudio.net/). Since 2012, FUSE has
in sociology at UC San Diego. Her research examines individual-level, cultural mechanisms that reproduce inequality, especially those pertaining to sex segregation in science and engineering fields. Her dissertation investigates the self-expressive edge of inequality, analyzing how gender schemas and self-conceptions influence career decisions of college students over time. She also studies the role of professional culture in wage inequality, cross-national beliefs about work time for mothers (with Maria Charles), and, in a Social Problems article, perceptions of inequality among high-level professional women (with Mary Blair-Loy). She earned Electrical Engineering and Sociology degrees from Montana State
change its curriculum. However, it gives programsthe flexibility to create programs that best meet local and regional needs. Over the long term,this will change the body of knowledge possessed by mechanical engineers, for not everyonewill have the same background in the two key areas.Professional SkillsProfessional Skills can be thought of as skills or career competencies which are often not taughtin the curriculum but that are practiced and acquired during the education process. They areconsidered “value-added” skills which are essential to a person’s career. Discussion ofprofessional skills begins by listing broad categories, such as Doyle [25] proposes. She lists thetop five mechanical engineering professional skills (applicable to all
practice. Projects supported by the National Science Foundation include interdisciplinary pedagogy for pervasive computing design; writing across the curriculum in Statics courses; as well as a National Science Foun- dation CAREER award to explore the use of e-portfolios for graduate students to promote professional identity and reflective practice. Her teaching emphasizes the roles of engineers as communicators and educators, the foundations and evolution of the engineering education discipline, assessment methods, and evaluating communication in engineering.Wende Garrison, Virginia Tech Wende Garrison got her bachelor’s and master’s from Portland State University in Film & Television and Rhetoric &
Education and Engineering DisciplinesAbstract:Ohio Northern University is in its second year of an innovative and unique Bachelor of Sciencedegree with a major in Engineering Education. This program will provide graduates with afoundation in engineering, mathematics, and education, qualifying the graduate for licensure as asecondary math teacher in the state of Ohio. The degree is similar to a General Engineeringdegree, expanding potential career opportunities. Further opportunities are expected to be amongvenues such as science and technology museums. This degree program offers the introduction ofmath teachers into middle and high school environments with an inherent appreciation ofengineering, producing graduates who
title ”Community Game Changer of the Month” from CBS Denver. He also was recently nominated for the Carnegie U.S. Professor of the Year award and the Presidential Award for STEM mentoring, both related to this project. Previous to his academic career Aaron Brown worked in the aerospace industry on such projects as the Mars Curiosity landing mechanism and Hubble robotics mission.Prof. Brent K Jesiek, Purdue University, West Lafayette Dr. Brent K. Jesiek is Associate Professor in the Schools of Engineering Education and Electrical and Computer Engineering at Purdue University. He is also an Associate Director of Purdue’s Global En- gineering Program, leads the Global Engineering Education Collaboratory (GEEC) research
inquiry tool will be administered tocamp participants throughout high school to measure their interest in engineering, intent to majorin STEM and overall college readiness. In this paper we will describe how the program wasimplemented, the experience of the participants and share the data from the pre-post survey.Keywords: pre-college, gender, race/ethnicity, engineeringIntroductionCreating equitable access to science, technology, engineering, and mathematics (STEM)education and career opportunities should begin at a pre-college level in order to reduce gendergaps and racial/ethnic disparities. The United States government has invested in STEMdisciplines to address the low presence of URMs (African Americans, Hispanics, and NativeAmericans