how team dynamics affect undergraduate women’s confidence levels in engineering.Dr. Malinda S. Zarske, University of Colorado, Boulder Malinda Zarske is a faculty member with the Engineering Plus program at the University of Colorado Boulder. She teaches undergraduate product design and core courses through Engineering Plus as well as STEM education courses for pre-service teachers through the CU Teach Engineering program. Her primary research interests include the impacts of project-based service-learning on student identity - es- pecially women and nontraditional demographic groups in engineering - as well as pathways and retention to and through K-12 and undergraduate engineering, teacher education, and
how team dynamics affect undergraduate women’s confidence levels in engineering.Dr. Malinda S. Zarske, University of Colorado, Boulder Malinda Zarske is a faculty member with the Engineering Plus program at the University of Colorado Boulder. She teaches undergraduate product design and core courses through Engineering Plus as well as STEM education courses for pre-service teachers through the CU Teach Engineering program. Her primary research interests include the impacts of project-based service-learning on student identity - es- pecially women and nontraditional demographic groups in engineering - as well as pathways and retention to and through K-12 and undergraduate engineering, teacher education, and
Paper ID #30323Teaching Ethical Photography to deepen Global Engineering CompetencyDr. Robert S Emmett, Virginia Tech Dr. Emmett serves as Assistant Director for Global Engagement in the College of Engineering at Virginia Tech. He is the author of Cultivating Environmental Justice: A Literary History of US Garden Writing (University of Massachusetts Press, 2016) and with David E. Nye, Environmental Humanities: A Critical Introduction (MIT Press, 2017). With Gregg Mitman and Marco Armiero, he edited the collection of critical reflections and works of art, Future Remains: A Cabinet of Curiosities for the Anthropocene (Uni
’best practices’ for student professional development and training. In addition, she is developing methodologies around hidden curriculum, academic emotions and physiology, and en- gineering makerspaces.Dr. Louis S. Nadelson, Colorado Mesa University Louis S. Nadelson has a BS from Colorado State University, a BA from the Evergreen State College, a MEd from Western Washington University, and a PhD in educational psychology from UNLV. His scholarly interests include all areas of STEM teaching and learning, inservice and preservice teacher pro- fessional development, program evaluation, multidisciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer
Paper ID #12881A Transdisciplinary Approach for Developing Effective Communication Skillsin a First Year STEM SeminarDr. Jeffrey J Evans, Purdue University, West Lafayette Jeffrey J. Evans received his BS from Purdue University and his MS and PhD in Computer Science from the Illinois Institute of Technology. His research interests are in artificial intelligence for music composition and performance and adaptive computing systems, focusing on the effects of subsystem interactions on application performance. He is a member of the ASEE, ACM and a Senior Member of the IEEE.Prof. Amy S. Van Epps, Purdue University, West
apawley@purdue.edu.Dr. Shawn S Jordan, Arizona State University, Polytechnic campus SHAWN JORDAN, Ph.D. is an Assistant Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State University. He teaches context-centered electrical engineering and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and
workplaces, which can positively affect productivity,commitment, and performance [20].Theoretical FrameworkWithin engineering education, the role of values remains relatively underexplored (perhapsbecause engineering culture often positions itself as free of values or biases), but outside ofengineering education, examining these issues is not new. Researchers in social andorganizational psychology have examined values through numerous approaches and frameworks,e.g., [46]-[49]. For this study, we turn to Schwartz et al.’s values framework [50] [51], which weleverage due to its seminal and popular nature and proven utility in understanding how valuesinfluence behaviors and priorities in a range of domains (e.g., workplaces [51] [52]). WhileSchwartz et
education classes take a case study approach. This paper will describe the implementation of this hybrid GE/senior project course and will present the assessment of the first year of this program’s implementation. Introduction In January 2013, the California State University Board of Trustees mandated that, unless excepted, undergraduate degree programs, including engineering degrees, be limited to 120 units. Title 5 § 40508 [1] states that “[a]s of the fall term of the 2014-2015 academic year, no baccalaureate degree programs shall extend the unit requirement beyond 120 semester units…” This mandate and short timeline for implementation necessitated swift action for proposals to be submitted and approved via campus curriculum committees and
theperception of stress as part of engineering culture stress perception can also attract more studentsfrom marginalized groups.References1 Schneider, L. in A Paper Presented at St. Lawrence Section Conference. Toronto, Canada. Retrieved from: www. asee. morrisville. edu.2 Ross, S. E., Niebling, B. C. & Heckert, T. M. Sources of stress among college students. Social psychology 61, 841-846 (1999).3 Goldman, C. S. & Wong, E. H. Stress and the college student. Education 117, 604-611 (1997).4 Hudd, S. S. et al. Stress at college: Effects on health habits, health status and self-esteem. College Student Journal 34, 217-228 (2000).5 Macgeorge, E. L., Samter, W. & Gillihan, S. J. Academic Stress
-centered design typepedagogies and the parallels between students’ interdisciplinary learning and faculty learning tonavigate institutional processes to create interdisciplinary courses [20]. Her recent research hasbeen to integrate social, political, and economic contexts into technical engineering courses. Asan actor in engineering education working to integrate broader societal contexts into theengineering curriculum at Tufts University, Ozkan’s positioning as a practitioner and researcherof pedagogical change informs and motivates her to pursue this collaborative research oncontextualization.Human-Centered Design: Contextualization for Better Design(s)Research on engineering design education demonstrates how treatment of design
engineering. 10References[1] E. Godfrey and L. Parker, “Mapping the Cultural Landscape in Engineering Education,” J. Eng. Educ., vol. 99, pp. 5–22, 2010.[2] T. McCarty and T. S. Lee, “Critical culturally sustaining/revitalizing pedagogy and Indigenous educational sovereignty,” Harvard Educ. Rev., vol. 84, no. 1, pp. 101–124, 2014.[3] H. S. Alim, “Critical Hip-Hop Language Pedagogies: Combat, Consciousness, and the Cultural Politics of Communication,” J. Lang. Identity Educ., vol. 6, no. 2, pp. 161–176, 2007.[4] J. Irizarry, The Latinization of U.S. Schools: Successful Teaching and Learning in Shifting Cultural Contexts. Routledge, 2015.[5] V. Kinloch, Harlem on Our Minds
-class, and homosexual men and women. Therewere some exceptions belonging to bisexuals in the same demographic groups. Largely, thistheme described older works (late 1990’s to early 2000’s), and this body of work constituted thefoundation of what researchers know about the experiences of the LGBTQIA+ community(D’Augelli, 1992; Dilley, 2002). Privileged members of the LGBT community are largely white,male, cisgender, and middle-class. Ongoing research on this group is likely enforced bysampling. As Renn (2010) mentioned, “there is no longer a gap in the literature” with regard toLGB research in higher education. This trend seems to be reflected in other disciplines. Renndid, however, mention that as of 2010, there was still a gap in the
technical audience. This provides an opportunity for instructors to discussthe differences between the two. Deliverables must include a quantitative diagram (sometimesdiscussed in class as an “engineering diagram”) of the design and a model with varyingparameters which shows the relationship between the components of the design. These diagramsand models must be used to demonstrate the problematic effect(s) of bias in the older design, aswell as the potential positive impact of the new ones proposed. Students will also have reflectivewriting prompts to complete after creating this deliverable.Preliminary resultsThis intervention design is being piloted in Spring 2020 across multiple class sections with acombined total of 91 students. Although the
[23]–[25].The value of fields external to traditional computing are explored through frameworks which canhelp orient one's praxis within computing. This includes frameworks for thinking about activism(i.e. praxis, intersectionality), interactions between technology and society (i.e. sociotechnicalsystems, technological determinism, and technological solutionism, and the New Jim Code [26]),and intervention (i.e. critical participation). By exploring alternative ways of orienting one'spraxis in computing, students are empowered to consider the central question of the module—from where do I want to frame my interventions and what could my conceptual framework(s) tolook like?The second module, titled “Inclusion as Intervention,” explores what it
demographic characteristics and college experiences across varying levels of parental educational attainment and family income level.A set of mutually exclusive groups was created based on respondents’ answers to questions aboutparental educational attainment. • No College – students for whom parent(s) did not finish high school or graduated high school, but did not attend college or complete any degrees. • Less than Associate’s Degree – students for whom at least one parent attended college, but did not complete a degree. • Less than Bachelor’s Degree – students for whom at least one parent completed an Associate’s degree, but did not complete a Bachelor’s degree. • Bachelor’s or Higher – students for whom at
design.However, some educators have described an important empathic requisite or antecedent:designers must adopt a user-centric mindset. For example, Postma et al. discussed moving designstudents from an “expert” mindset, where the designer thinks they know best, to a “participatory”mindset, where the designer perceives their self and user(s) both as experts.48 Forming thismindset is important, as student designers who hold an expert mindset tend to exclude theirproject partner throughout a design process.49 Hence, educators ought to prompt students to thinkabout engineering with a user as opposed to for a user12,50 as this may catalyze the utilization ofempathy while simultaneously alleviating absolutist/positivistic biases.414.2 Service
become reflective engineers who usetheir phronesis to take conflicts and dilemmas more seriously in order to meet the ultimate goalof engineering: to find ways to make the world a better place.Reflection in Engineering Education Literature Various forms of reflection have surely been practiced and promoted by engineeringeducators around the world for centuries. However, considering that “engineering educationresearch (EER) generally lacked definition as a discipline until the late 1990s and early 2000s”(Johri & Olds, 2014) relevant literature on graduate-level engineering education prior to the1990’s can be difficult to find. This review will focus primarily on literature of the past decadebecause it is both more readily available
dimensions of diversity explored hereare presented as a useful first step in the necessary and difficult process of reimagining ourengineering institutions, classes, spaces and research environments in order to create the roomfor different kinds and types of voices to speak and be heard. References[1] “Engineering - Field of degree: Women - nsf.gov - Women, Minorities, and Persons with Disabilities in Science and Engineering - NCSES - US National Science Foundation (NSF).” .[2] E. Mather, “Facts and Stats,” University of Virginia School of Engineering and Applied Science, Jun-2017. .[3] C. E. Brawner, M. M. Camacho, S. M. Lord, R. A. Long, and M. W. Ohland, “Women in
as lifestyle and a meritocracy of difficulty: Two pervasive beliefs among engineering students and their possible effects," presented at the ASEE Annual Conference & Exposition, Honolulu, HI, 2007.[3] C. E. Foor, S. E. Walden, and D. A. Trytten, "“I wish that I belonged more in this whole engineering group:” Achieving individual diversity," Journal of Engineering Education, vol. 96, pp. 103-115, 2007.[4] E. Godfrey, A. Johri, and B. Olds, "Understanding disciplinary cultures: The first step to cultural change," Cambridge handbook of engineering education research, pp. 437-455, 2014.[5] D. Eisenberg and S. K. Lipson, "The Healthy Minds Study 2018-2019 Data Report," 2019.[6] A. Danowitz and K
Mendenhallprovided feedback on the interview protocol. The authors wish to acknowledge Nicole Jacksonfor scheduling and conducting interviews. Lastly, the authors wish to thank the studentparticipants for sharing their experiences.References[1] E. Godfrey and L. Parker, "Mapping the cultural landscape in engineering education," Journal of Engineering Education, vol. 99, pp. 5-22, 2010.[2] E. Godfrey, "Cultures within cultures: Welcoming or unwelcoming for women?," American Society of Engineering Education Conference Proceedings, 2007.[3] C. E. Foor, S. E. Walden, and D. A. Trytten, "“I wish that I belonged more in this whole engineering group:” Achieving individual diversity," Journal of Engineering Education, vol. 96, pp
] analyzed the “low-choice culture” of engineering curricula, particularly incontrast to other fields of study. In the context of new research demonstrating the value of selfdetermination or autonomy for students in motivating learning, enhancing self-efficacy, andsupporting persistence, the relative inflexibility of engineering curricula stood out starkly. Withinindividual courses, studies have shown the “power of choice” to positively influence studentoutcomes, for example, when students may choose from among a menu of design projects[45, 46], and recommendations have been made for the design of self-determination supportiveengineering-student learning experiences [47, 48]. However, Forbes, et al.,’s statistical analysis ofthe curricula at 46
understanding this community. c American Society for Engineering Education, 2017 Quantifying and Assessing Trends on National Science Foundation’s Broader Impact Criterion The American Innovation and Competitiveness Act (S.3084) reapproved the NationalScience Foundation’s (NSF) merit review criteria i.e. Intellectual Merit and Broader Impacts,called for an update of the policy guidelines for NSF staff members and merit review processparticipants, and emphasized the importance of transparency and accountability. EvaluatingProject Summaries based on Intellectual Merit and Broader Impacts has been the standard ofmaintaining excellence and accountability since 1997. Intellectual
Claire, WI: PESI Publishing & Media, 2017.[6] M. Price and et al., “Effectiveness of an Extended Yoga Treatment for Women with Chronic Posttraumatic Stress Disorder,” The Journal of Alternative and Complementary Medicine, vol. 23, no. 4, pp. 300–309, 2017.[7] T. Gard, N. Brach, B. K. Holzel, J. J. Noggle, L. A. Conboy, and S. W. Lazar, “Effects of a yoga-based intervention for young adults on quality of life and perceived stress: The potential mediating roles of mindfulness and self-compassion,” The Journal of Positive Psychology, vol. 7, no. 3, pp. 165–175, 2012.[8] C. Smith, H. Hancock, J. Blake-Mortimer, and K. Eckert, “A randomised comparative trial of yoga and relaxation to reduce stress and anxiety
STEM topics, Very few are more familiar with LEGOs and robotics and so it was very new to them… you know low socioeconomic[s]... It's not surprising because they do not have that type of exposure and so it's really important and I think was fascinating for them to have that exposure to see what STEM is all about and they seem to really enjoy it.It appears taken for granted that Jill’s and Bob’s students are familiar with LEGOs, and someeven Mindstorms. In contrast, Deborah’s consideration of the social and economic inequities thather students face does not allow her to make such assumptions.Teachers found the STEM connections educationally important in and of themselves, but alsoarticulated hopes that they inspire
recommendations expressed in thismaterial are those of the authors and do not necessarily reflect the views of the National ScienceFoundationReferences [1] C. Conrad and M. Gasman. Educating a Diverse Nation: Lessons from Minority Serving Institutions. Cambridge, MA: Harvard University Press, 2015. [2] National Science Foundation (NSF), “Science and engineering indicators 2014,” 2014, Available: http://www.nsf.gov/statistics/seind14/ [Accessed: October, 15, 2018]. [3] S. L. Colby, and J. M. Ortman, “Predictions of the size and composition of the U.S. population 2014 to 2060: Population estimates and projects,” U. S. Census Report #P25-1143. Washington, DC
,benevolence) with varying degrees of importance.”His value system consists of basic values which all people hold, but in varying rank or orderaccording to personal relevance, importance and priority. This “tradeoff amongst the relevantvalues” [75, p.12] within the value system of a person, is what classifies which category(named Higher Order Value) of the human value system this person resides in, and thereforehow this person’s motivation and decision-making processes are driven.All values and Higher Order Values of the Schwartz Personal value system map ontoSchwartz et al.’s Circular motivational continuum [76, p.7], shown in Figure 3, for clearerrepresentative indications of the Higher Order Values and their underlying basic values
discussions that followed the presentations ofpapers, I drew on notes that I took or, for the sessions I was not able to attend, obtained from themoderator or organizer (or both). Using this method, I created discussion notes for all technicalsessions. Each set of notes begins with a brief synopsis of the general theme(s) of that session.Most of the content of the notes is questions posed by the papers and discussion that might be thesubject of further research in the broad range of areas addressed within LEES scholarship. Notesfor all 13 sessions appear as appendices to this paper. Figure 1 below provides illustrativeexcerpts from the discussion notes for session U434B: Diversity and Inclusion: Concepts, MentalModels, and Interventions. U434B