andimportant to today’s engineers. However, Frankenstein is rarely discussed in technical classes.This paper discusses a design project for first-year Mechanical Engineering students that askedstudents to select and explore themes from Frankenstein as a guide for the design of anautonomous robot. In essence, the students were required to develop a target customer that wouldbenefit from the theme they selected. The use of the novel to generate concepts for the robotswas supported by using a form of double column notes. This processes required the students toselect several quotes from the book as inspiration for concept generation. Students sketched therobot ideas and explained the connection between the quote from the book and the concept. The
Paper ID #26098Does ”Affordance” Mean ”Thing-inform”?: Case Studies in Seeing Engineer-ing Meaning Differently Through the Process of Technical ASL VocabularyCreationMel Chua, Georgia Tech Mel is an engineering education researcher who enjoys geeking out about developing languages for ar- ticulating engineering curricular cultures and their formation, open source hacker/maker communities, faculty development, and more. She occasionally draws research comics. Mel is also an electrical and computer engineer, a low-pass auditory filter, and a multimodal polyglot.Mr. Ian Smith, Project Alloy Ian is a Deaf software engineer
Paper ID #25678Making Connections Across a Four-Year Project-Based Curriculum: ePort-folios as a Space for Reflection and Integrative LearningDr. Chrysanthe Demetry, Worcester Polytechnic Institute Dr. Chrysanthe Demetry is associate professor of Mechanical Engineering and director of the Morgan Teaching & Learning Center at Worcester Polytechnic Institute. Her teaching and scholarship interests focus on materials science education, K-12 engineering outreach, gender equity in STEM, and intercul- tural learning in experiential education abroad. As director of the Morgan Center at WPI since 2006, Dr. Demetry coordinates
, her research spans education and practice, working on the integration of community research into project based learning. Her work overlaps areas of GIS mapping, global sustainable urbanism, design and creativity.Dr. Andrew N Quicksall c American Society for Engineering Education, 2019 Deep Observation: Geo-Spatial Mapping as a Strategy for Site-Engagement and Problem-DesignAbstractWhile project-based learning powerfully brings students into real world economic andenvironmental contexts, a subject-oriented approach to such work means that they are often ableto remain aloof from real stakeholder engagement and participation, even when working on alocal site [1]. Given
approach totechnical writing and assignments, and an experimental course, which featured an interventionwhereby student teams completed an electro-mechanical device repair and documentationproject. The device repair and documentation project requires students to propose and report ondeliverables to corporate representatives, produce user-oriented technical prose supported bydetailed photography, and proceed with the project according to their own declared timelines todeliver publish-ready user guides. At completion, these user guides are published on the site andaccessed by a growing network of global users. It is hypothesized that the experiential devicerepair and documentation project uniquely equips students in the experimental cohort
how team dynamics affect undergraduate women’s confidence levels in engineering.Dr. Malinda S. Zarske, University of Colorado, Boulder Malinda Zarske is a faculty member with the Engineering Plus program at the University of Colorado Boulder. She teaches undergraduate product design and core courses through Engineering Plus as well as STEM education courses for pre-service teachers through the CU Teach Engineering program. Her primary research interests include the impacts of project-based service-learning on student identity - es- pecially women and nontraditional demographic groups in engineering - as well as pathways and retention to and through K-12 and undergraduate engineering, teacher education, and
that this multidisciplinary projectprovided an outlet where both engineering and fine art majors could put theory into practice in asafe environment where the outcome did not have to be perfect. Working in multidisciplinaryteams provided an opportunity for both engineers and fine art majors to gain an appreciation thatboth majors work hard but in different ways. The artists described how the experiencehumanized engineering, but gatekeeping did emerge when it came to engineers painting andmaking creative choices on the project. While the project did provide opportunities to exchangeskills and knowledge between the majors, it also lead to some resentment from the artists aboutthe abundance of resources provided to engineering majors by the
learning contexts. She is particularly interested in how students navigate communication challenges as they negotiate complex engineering design projects. Her scholarship is grounded in notions of learning as a social process, influenced by complexity theories, sociocultural theories, sociolinguistics, and the learning sciences. c American Society for Engineering Education, 2019 How Writing for the Public Provides Affordances and Constraints in Enacting Expert Identity for Undergraduate Engineering StudentsThe science communication field has recognized that the present media landscape is fracturedand segmented with social media and online communities making up important spaces whereaudiences
], [2] stressed the need for engineers to possessleadership abilities. The former emphasized engineering graduates “must understand theprinciples of leadership and be able to practice them in growing proportions as their careersadvance. Additionally, the latter report stated, “it is becoming increasingly recognized that it isimportant to introduce engineering activities, including team-based design projects … early inthe undergraduate experience.” Curricular approaches that engage students in team exercises, inteam design courses, and in courses that connect engineering design and solutions to real-worldproblems demonstrate the social relevance of engineering. However, the designs of theseapproaches and assessment of their effectiveness are not
current research projects deal with earthquake risk management technology in Mexico and the United States, environmental data justice in the US/Mexican borderlands, and the development and practice of engineering expertise.Leslie Light, Colorado School of Mines Leslie Light is an Associate Teaching Professor in the Engineering, Design, and Society Division at the Colorado School of Mines, and the Director of the Cornerstone Design@Mines program. She received a B.S. in General Engineering, Product Design from Stanford University and an MBA from The Wharton School at the University of Pennsylvania, specializing in Entrepreneurial Management. Prior to joining Mines she spent 20 years as a designer, project manager, and
, Pennsylvania State University, University Park Stephanie Cutler has a Ph.D. in Engineering Education from Virginia Tech. Her dissertation explored faculty adoption of research-based instructional strategies in the statics classroom. Currently, Dr. Cutler works as an assessment and instructional support specialist with the Leonhard Center for the Enhance- ment of Engineering Education at Penn State. She aids in the educational assessment of faculty-led projects while also supporting instructors to improve their teaching in the classroom. Previously, Dr. Cutler worked as the research specialist with the Rothwell Center for Teaching and Learning Excellence Worldwide Campus (CTLE - W) for Embry-Riddle Aeronautical
-specific theory of writing andnudging them into the novice status needed to learn how to address writing in a new context [2],we (Jenn Mallette, a faculty member in English/technical communication, and Harold Ackler, afaculty member in materials science and engineering) approached the writing components injunior- and senior-level materials science lab/project classes with two goals: 1.) asking studentsto engage in reflection throughout the semester to connect learning not only from prior classes,but across assignments, semesters, and years; and 2.) encouraging students to generate their owntheory of writing that will help them address the demands of writing for engineering withinschool and beyond.ContextThe students in this study are juniors
Resources Engineering and a Ph.D. in Civil Engineering from The University of Texas at Austin, while working with the Austin chapter of Engineers Without Borders as a volunteer and project lead for a project in Peru. She has published and presented on incentivizing decentralized sanitation and wastewater treatment, on sustainability of coastal community water and sanitation service options, as well as on integrating liberal arts and STEM education, currently through the vehicle of the Grand Challenges Scholars Program. She has co-designed workshops oriented toward educational change for Olin’s Summer Institute and the joint Olin College-Emerson College event: Remaking Education.Dr. Selin Arslan, Lawrence Technological
Sky’s the Limit: Drones for Social Good courseincludes critical aspects that relate to multiple engineering disciplines, which allows students toidentify the connections between drones and their particular engineering concentration. Thecourse is also multi-disciplinary and encourages critical social reflection. Students consider abroad range of applications of drones with the goal of promoting social good. The courseculminates in an entrepreneurial project that incorporates knowledge and skills from severalengineering disciplines in the context of engineering for social good.Research has found that female, Black, and/or Latinx engineering students are drawn to pursuingcareers that they identify as promoting social justice and a greater social
international colleagues. He has a broad background in mechanical and electrical engineering, and physiology with specific training and expertise. His work includes mod- eling the cardiovascular system, ventricular assist devices, cardiac physiology, instrumentation systems and leadless cardiac pacing. He help developed and was the inaugural director of a project-based-learning engineering curriculum. He is now involved in discovery-based-learning on multi-disciplinary teams. c American Society for Engineering Education, 2019 Building Your Change Agent Tool-Kit: Channeling the Power of StoryWe live in a social and organizational infrastructure made up of stories. These stories can behanded down
primarily tasked with the education of undergraduate engineers. In her courses, she employs active learning techniques and project-based learning. Her previous education research, also at Stanford, focused on the role of cultural capital in science education. Her current interests include en- gineering students’ development of social responsibility and the impact of students’ backgrounds in their formation as engineers.Dr. Janet Y. Tsai, University of Colorado, Boulder Janet Y. Tsai is a researcher and instructor in the College of Engineering and Applied Science at the University of Colorado Boulder. Her research focuses on ways to encourage more students, especially women and those from nontraditional demographic groups
communication and management acumen (e.g., technicalwriting, technical presentations, and project management). Such an approach is essential topreparing future engineers for the workplace [1]. The challenge becomes providing studentswith effective exposure to both kinds of skills within engineering programs.Traditionally, the development of such skills has been a matter of content-specific courseworkintegrated into a school’s engineering program(s). (A classic example is the technical writingcourse often offer by English or communication departments and required of engineeringundergraduates.) As institutional resources shrink and student demand increases, the need tofind alternative methods for offering training in these “soft-skill” areas grows
Paper ID #25605Sociotechnical Habits of Mind: Initial Survey Results and their FormativeImpact on Sociotechnical Teaching and LearningDr. Kathryn Johnson, Colorado School of Mines Kathryn Johnson is an Associate Professor at the Colorado School of Mines in the Department of Elec- trical Engineering and Computer Science and is Jointly Appointed at the National Renewable Energy Laboratory’s National Wind Technology Center. She has researched wind turbine control systems since 2002, with numerous projects related to reducing turbine loads and increasing energy capture. She has applied experiential learning techniques in
] with transdisciplinary action research principles [5]. This paper reports on theimplementation of this program in academic-year 2017/18 and is meant to serve as an openroadmap for those interested in developing an interdisciplinary community of practice to supportwriting instruction in STEM.In Section II, we describe our institutional context, project background, and preparatory work. InSection III, we describe the central concepts that informed our activities, namely writing-across-the-curriculum approaches to writing instruction, the community of practice notion of sharedknowledge-making, and principles of transdisciplinary action research. This section brieflyreviews the literature and elaborates on the structure of the WAE program. Section
Colorado State University. Her previous careers were as software design and development engineer, project manager, and program manager for Hewlett-Packard Company, and as a management consultant for Personnel Decisions International. She is author of ”Understanding Employee Engagement: Theory, Research, and Practice” and ”Organiza- tional Psychology and Behavior: An Integrated Approach to Understanding the Workplace”. She is the past Editor-in-Chief for the Journal of Managerial Psychology, serves on several editorial boards, and has published in peer-reviewed scientific academic and practice outlets. She frequently consults with organizations across the country, and actively collaborates on grant funded research with
- cation with specific emphasis on innovative pedagogical and curricular practices at the intersection with the issues of gender and diversity. With the goal of improving learning opportunities for all students and equipping faculty with the knowledge and skills necessary to create such opportunities, Dr. Zastavker’s re- cent work involves questions pertaining to students’ motivational attitudes and their learning journeys in a variety of educational environments. One of the founding faculty at Olin College, Dr. Zastavker has been engaged in development and implementation of project-based experiences in fields ranging from science to engineering and design to social sciences (e.g., Critical Reflective Writing; Teaching and
at the University of New Haven where she is currently teaching in the Tagliatela College of Engineering and coordinating a college-wide initiative, the Project to Integrate Technical Communication Habits (PITCH).Jenna Pack Sheffield, University of New Haven Jenna Sheffield holds a PhD in Rhetoric, Composition, and the Teaching of English from the University of Arizona. Sheffield is currently an Assistant Professor of English at the University of New Haven where she also directs the Writing Across the Curriculum program. Her research in composition pedagogy and theory and writing program administration has appeared in publications such as Computers and Com- position International, Computers and Composition Online
Paper ID #26492An Integrated Social Justice Engineering Curriculum at Loyola UniversityChicagoDr. Gail Baura, Loyola University Chicago Dr. Gail Baura is a Professor and Director of Engineering Science at Loyola University Chicago. While creating the curriculum for this new program, she embedded multi-semester projects to increase student engagement and performance. Previously, she was a Professor of Medical Devices at Keck Graduate In- stitute of Applied Life Sciences, which is one of the Claremont Colleges. She received her BS Electrical Engineering degree from Loyola Marymount University, her MS Electrical Engineering
, international relations in the sphere of transport communications, iternational logistics and supply chain management, sustainable development and ecology.Mrs. Karalyn Clouser, Western Transportation Institute at Montana State University Karalyn Clouser is a GIS and planning specialist with the Western Transportation Institute. She has expe- rience editing and managing spatial data to support transportation planning and implementation projects, and offers skills with numerous GIS tools and platforms. At WTI, she has provided GIS and planning support to the Paul S. Sarbanes Transit in Parks Technical Assistance Center, which assists with the de- velopment of alternative transportation on federal lands. Her experience includes
in engineering capstonecourses as they form teams, seek professional positions in the workplace, and/or make decisionsto continue on to graduate school during their last year of undergraduate studies. Further, understanding persistence of Latinx is particularly imperative given that they arethe nation’s largest minority group and among its fastest growing populations [3]. As such, thisresearch project will contribute to the national conversation on broadening participation ofLatinx. The site of this research investigation is “Border University” (BU), which serves alargely Mexican-origin population in a region of Texas with one of the lowest median incomes[4]. In particular, we focus on the senior capstone course where students work in
engineering juniors and seniors having recently completed a co-opor internship, the second investigates the experiences of recent engineering graduates during thefirst twelve weeks of their jobs, and the third explores the beliefs of more experienced engineerswho engaged in service-oriented projects as students. We selected these data because they bothrepresent three different points in time and speak to different levels of understanding of andfamiliarity with engineering organizations. We conducted a thematic analysis to identify majorthemes related to engineers’ agency and the way their organizational structure interacts with theirown beliefs and skills.Specifically, we explore themes of Relational Empowerment, Structural Empowerment,Organizational
reviewer in the National Science Foundation (NSF) Small Business Innovative Research (SBIR) program. Dr. Agi received his Ph.D. in Electrical Engineering from the University of New Mexico in Albuquerque. He received his MBA from the Berkeley-Columbia Executive MBA Program.Donna M. Koechner, eNova Solutions, LLC Donna Koechner earned her BS in Electrical Engineering at Kansas State University and her MS in Elec- trical and Computer Engineering at the University of New Mexico. She has worked in academia, research and industry on products and projects including image segmentation and pattern recognition, software design, software specification, development and testing, product engineering, technical writing, course
Mindstorms in theirstudents’ education, but encountered different barriers and constraints when trying to supportthose values. In common, they valued Mindstorms for two general reasons: 1) its role insupporting project-based learning; 2) its potential role in shaping students’ futures, specificallythe possibility that they might choose to pursue engineering, robotics, or another STEM field.The perceived additive value of Mindstorms to their schools is its support for hands-on, project-based learning. While sometimes this is framed by the fact that Mindstorms is a toy thatreferences popular youth culture, the larger focus was on its role in changing the content andstructure of instruction. For example, Jill compares lessons with Mindstorms to her
and served as chair of LED. When theTechnological Literacy Constituency Committee was formed in 2006, most of the officers of thenew group were also members of LED.In alignment with the new committee, there is a marked increase in numbers of papersmentioning “technological literacy” in 2005 and 2006. As interest in technological literacy grewwithin ASEE and, perhaps more significantly, in the National Academy of Engineering and theNational Science Foundation, the projects and goals of the two groups diverged, though theywere never in competition or estranged from each other. Their interests began to overlap moreextensively again when the constituent committee became the Technological and EngineeringLiteracy/Philosophy of Engineering (TELPhE
cooperative, project-based integrative and interdisciplinary learning. Although aproposed AB program in engineering was neither successful nor sustained, this institutionalsensibility is still reflected in WPI practices at the course level (e.g. [13]) as well as larger-scaleinitiatives.Since the late-1960s moment at which boundary-transgressing programs like the WPI Plan andLafayette College’s AB in Engineering (which later became a program in Engineering Studies)curriculum were launched, disciplinary boundaries have remained strong, sometimes even beingfortified on campuses. Integrative activities flourished only on the margins of traditionaldisciplines, rarely offered much institutional nourishment or light (e.g. [7]). Even at HarveyMudd, the