Robotics with Internet-of-Things for Student Learning on Industrial Robotics and Automation in Manufacturing AbstractThis paper explores the experience of implementing virtual reality (VR) laboratory activities withInternet-of-Things (IoT) for students to learn industrial robotics and automation in manufacturing.This work provides an innovative solution for optimizing learning effectiveness and improvingeducational outcomes through the development of VR models that can be used and integrated intothe existing robotics laboratory. We explore methods of using ABB RobotStudio to allow studentsto program traditional industrial robots using the project-based learning approach. Key features ofhow
Engineering Education, 2024 Virtual Reality Simulation of Wind TurbineAbstractThis research study presents an innovative virtual reality (VR) laboratory module aimed atenhancing green manufacturing education, particularly focusing on the intricacies of wind turbineefficiency. This VR-based educational tool provides a hands-on learning experience that simulatesthe operation of a wind turbine, allowing students to explore the dynamics of wind energyconversion. Using VR controllers and headsets, participants can interact with a virtual environmentthat includes a vertical wind turbine and a fan blower, complete with start/stop buttons and controlsfor adjusting wind speed.The virtual lab is built on the Unity 3D platform
ofSTEM education. Moreover, it explores various dimensions of AM education, includinginnovative laboratories equipped with advanced 3D printers, remote laboratories to enable accessfrom distant locations, curriculum development encompassing on-ground, online, and hybridprograms. Furthermore, this study examines AM software tools and simulations, industrycertifications, and hardware and equipment used in educational settings. The paper also delvesinto educational pathways, collaborations between academia and industry, workforce demands,and the ethical and societal aspects of AM education, focusing on sustainability and equity.Overall, this study offers insights into the diverse and evolving landscape of AM education,emphasizing adaptability
University Dr. David Gill is an Assistant Professor of Manufacturing Engineering at Western Washington University where he specializes in CAD/CAM and CNC. Prior to coming to Western, Dr. Gill was Principal Member of the Technical Staff at Sandia National Laboratori ©American Society for Engineering Education, 2024 Adapting CAD/CAM and CNC Curriculum to Advances in TechnologyOne of the challenges faced in manufacturing engineering education is how best to teach important,traditional content while branching out into new areas that are emerging as manufacturingtechnologies evolve. Dealing with this challenge requires a clear understanding of what is thefoundational material for a MFGE student to
mechanical, electrical, and software levels. Their focus is not just on physicalmanufacturing systems; also includes the enablement (sensing and acquisition) and use of data(analytics) around manufacturing systems to drive increases in productivity, product quality, andbusiness feedback.” That echoes the “Report to the President Accelerating US AdvancedManufacturing”, which states two emerging technologies of national importance [3]: 1) advancedsensing, control and platform for manufacturing, and 2) visualization, information, and digitalmanufacturing. The ABET proficiencies also require Manufacturing Engineering programs to havecurricular content covering “manufacturing laboratory or facility experience: measurement ofmanufacturing process
anddeveloped to introduce students to the assembly concepts/ stages of two different types ofgrippers and their associated mechanisms. The module is then incorporated into MechanicalEngineering Technology MET:230 Fluid Power course laboratories. A research study has beenconducted to explore MR's effectiveness in teaching assembly processes, where the module hasbeen experienced by 102 undergraduate students registered in the course.3. Interactive MR Module for Teaching AssemblyThe interactive MR module is designed for undergraduate-level students using the Microsoft-driven platform Mixed Reality Tool Kit (MRTK) for Unity via HoloLens 2. It introducesstudents to two types of hydraulic grippers (light-duty and heavy-duty), their components,subsystems
and Ph.D. in Mechanical Engineering from the University of Missouri Rolla. Dr. Ertekin has also been a Certified Manufacturing Engineer (CMfgE), awarded by the Society of Manufacturing Engineers (SME) since 2001, and a Certified Quality Engineer (CQE) awarded by the American Society for Quality (ASQ) since 2004. In addition to positions in the automotive industry, Dr. Ertekin has held faculty positions at Western Kentucky University and Trine University. In 2010, he joined Drexel University’s College of Engineering as an associate clinical professor. He has been instrumental in course development and the assessment and improvement of the Engineering Technology (ET) curriculum, including integrated laboratories
this course in Spring 2024. There were 12 students enrolled, grouped into 4teams. Each team was allocated a 3D printer. Module 1 lasted three weeks, and each team wasallocated a 3D printer. In week 1 of Module 1, the author gave a lecture on the technologies andcomponents required to form a 3D printer. Then students spent one week assembling the printersfrom components. In week 3 of Module 1, students worked on printing test samples, whichincluded troubleshooting 3D printing.This course will be evaluated by the end of the semester. Ten common questions will be asked toevaluate the course: • The course is well organized. • The assignments aid me in achieving the course objectives. • The projects or laboratories aid me in achieving the
, College Station, TX. His research interests include automation, robotics, cyber-manufacturing and Industry 4.0; optical/infrared imaging and instrumentation; micro/nano manufacturing; and design of technology for engineering education. He is also the Director of the Rockwell Automation Laboratory at Texas A&M University, a state-of-the-art facility for education and research in the areas of automation, robotics, and Industry 4.0 systems. He was named Honorary International Chair Professor for National Taipei University of Technology in Taipei, Taiwan, for 2015-23. Dr. Hsieh received his Ph.D. in Industrial Engineering from Texas Tech University, Lubbock, TX. ©American Society for
Paper ID #41899Interactive and Web-based Animation Modules and Case Studies for AutomatedSystem DesignDr. Sheng-Jen Hsieh, Texas A&M University Dr. Sheng-Jen (”Tony”) Hsieh is a Professor in the Department of Engineering Technology and Industrial Distribution and a member of the Graduate Faculty at Texas A&M University, College Station, TX. His research interests include automation, robotics, cyber-manufacturing and Industry 4.0; optical/infrared imaging and instrumentation; micro/nano manufacturing; and design of technology for engineering education. He is also the Director of the Rockwell Automation Laboratory at
Tutorial for HoloLens 2Each high school involved in this grant project received the following equipment and theirassociated software as well as consumables needed for the equipment: ● 24 IoT kits ● 2 Structure Core 3D Scanners and 4 Apple iPads. ● 1 HoloLens 2 ● 1 VEX V5 Work cell System ● 10 Creality CR-10 FFF 3D printers ● 1 Elegoo Mars SLA 3D printerHopewell High School dedicated one of their classrooms as a digital manufacturing laboratoryafter working with the project team (Figure 3). Figure 3. Digital manufacturing laboratory at the Hopewell High SchoolMultiple training sessions were organized for the high school students and their teachers (Figure4a and b). Student training took place at the high schools, when