Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and success in retention of undergraduate students in engineering. He was a coauthor for best paper award in the Journal of Engineering Education in 2013.Dr. Cindy Waters, North Carolina A&T State University Her research team is skilled matching these newer manufacturing techniques
Paper ID #11736INTEGRATIVE MULTIDISCIPLINARY MATERIALS & MECHANICS TEAMPROJECTDr. Kyle G. Gipson, James Madison University Dr. Kyle Gipson is an Assistant Professor at James Madison University (United States) in the Department of Engineering (Madison Engineering) and the Center for Materials Science. He has taught courses per- taining to introduction to engineering, materials science and engineering, engineering design and systems thinking. He has a PhD in Polymer, Fiber Science from Clemson University. His research background is in the synthesis of polymer nanocomposites and engineering education. He was trained as a
-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and success in retention of undergraduate students in engineering. He was a coauthor for best paper award in the Journal of Engineering Education in 2013.Dr. Janet Callahan, Boise State University Janet Callahan is
Paper ID #7130Muddiest Point Formative Feedback in Core Materials Classes with YouTube,Blackboard, Class Warm-ups and Word CloudsProf. Stephen J Krause, Arizona State University Stephen J. Krause is a professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge
included pre-, in- and post-class documents and activities, designed with the threecolumn lecture planning table. Table I was applied to the point defect formation energycalculation module taught in the Structure of Materials course.Students were required to study the basic modeling concepts before the class. The first 15minutes of the class were for a quiz, followed by quiz solution analysis and explanation. This in-class quiz assessed students’ understanding of the modeling concepts they self-studied before theclass. The instructor also answered students’ questions. The rest of the time in the class was forhands-on practice. The in-class exercises were designed for different course topics and learningoutcomes. For example, the course topic was
AC 2009-1725: ENHANCING FUNDAMENTAL MATERIALS ENGINEERINGEDUCATION USING BIOMEDICAL DEVICES AND CASE STUDIESKathleen Kitto, Western Washington University Page 14.567.1© American Society for Engineering Education, 2009 Enhancing Fundamental Materials Engineering Education Using Biomedical Devices and Case StudiesAbstractDuring the past six years several best practices in teaching and learning have been implementedin our Introduction to Materials Engineering course to transform the course from a traditionallecture only course to a course that is centered on conceptual and active learning. In addition,this academic year the content of the course was also
primary material associated with the topic.Students were asked to consider ore extraction, raw material processing, product manufacturing,and end-of-life of the material, with a primary focus on the materials processing-properties-structure triad. Projects will be assessed by a team of faculty and graduate students who are notresponsible for the course using a cognitive domain rubric. In addition, students will be asked tocomplete a survey that both addresses the cognitive domain as well as the affective domain relatedto the connections between concepts in materials science and their professional goals. Data will becompared across groups provided different types of mentorship during the development of theirproject. We will report on the final
faculty to do a better job of integrating science, math and communication in the engineering curricula.17,18,19 In 1995, the National Research Council’s (NRC) Board on Engineering Education called upon all engineering colleges to provide more exposure to interdisciplinary/cross-disciplinary aspects of teamwork, hands-on experience, creative design, and exposure to “real” engineering and industrial practices, identifying integration of key fundamental concepts in science and engineering as the number-one principle for new engineering curricula and culture.20 Ideally, entire curricula would comprehensively integrate these subjects. However, integrating these subject domains into engineering is most critical at the freshman level
Institute of Technology Simo Pajovic is a graduate student in the MIT Department of Mechanical Engineering, where his research focuses on nanoscale transport phenomena. In 2019, he graduated from the University of Toronto with a B.ASc. in Mechanical Engineering. His capstone project was to design and prototype a benchtop universal testing machine for educational use. As an undergraduate research assistant, he worked on micromechanical characterization of lubricants used in aerospace applications and later designing and prototyping medical devices.Mr. Cheuk Yin Larry Kei, University of Toronto Larry Kei obtained his BASc in Civil Engineering at the University of Toronto in 2019. He is currently working in the
funding from the National Science Foundation to examine and address inequities in higher education, specifically as they relate to Science, Technology, Engineering and Mathematics (STEM). She served the NSF ADVANCE grant initiatives as a co-Principal Investigator, working to improve practices to recruit and retain women of color in STEM and enhance institutional climate at USD. Other current research grants support pathways for veterans in higher edu- cation, and the NSF program called, ”Revolutionizing Engineering & Computer Science Departments.” Her co-authored books include The Borderlands of Education (with Susan Lord), Mentoring Faculty of Color, and Beginning a Career in Academia: A Guide for Graduate
Paper ID #15981Special Interest Section of a Core Mechanical Engineering Course – Bioma-terial Emphasis of an Introduction to Materials CourseDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She
), founder of The Design & Entrepreneurship Network (DEN), and Division I rower. In her spare time, Bre teaches design thinking workshops for higher education faculty/administrators at the Stanford d.School, coaches a global community of learners through IDEO U, and fails miserably at cooking.Dr. Elizabeth A. Reddy, University of San Diego Elizabeth Reddy is a post-doctoral research associate at the University of San Diego’s Shiley-Marcos School of Engineering. She is a social scientist, holding a PhD in cultural anthropology from the Univer- sity of California at Irvine and an MA in Social Science from the University of Chicago. She is Co-Chair of the Committee for the Anthropology of Science, Technology and
engineering technology.The current plastics laboratory course indicates deficiencies for undergraduate students to dealwith complex material systems in characterization and testing for selection and design purposes.We develop the concepts involved in converting a traditional “verification” experiment (wherethe student verifies a principle taught in the classroom) to a "guided inquiry" experiment (wherethe student discovers the concept using the data and information collected.) and to reemphasizediscovery-type experiments (i.e. research). The main purpose of this study was to develop andenhance plastics laboratory practices to increase engagements in an active-learning pedagogythrough the modification of POGIL strategies. In addition, we attempted to
Paper ID #27789Active Learning in an Introductory Materials Science CourseDr. Lessa Grunenfelder, University of Southern California Lessa Grunenfelder has a BS in astronautical engineering and a MS and PhD in materials science, all from the University of Southern California. In 2015 she joined the USC Mork Family Department of Chemical Engineering and Materials Science as teaching faculty. She teaches both undergraduate and graduate courses on material properties, processing, selection, and design. She is passionate about sharing her love of materials science with students through curriculum that combines fundamental
U-M. Her current research interests include the effect of instructional technology on student learning and performance, effective teaching strategies for new graduate student instructors, and the impact of GSI mentoring programs on the mentors and mentees.Joanna Mirecki Millunchick, University of Michigan Joanna Millunchick is Associate Professor of Materials Science and Engineering, and is affiliated with the Applied Physics Program and the Michigan Center for Theoretical Physics at the University of Michigan. Prior to joining UM in 1997, Millunchick was a Postdoctoral Fellow at Sandia National Laboratories. She received her B.S. in Physics from DePaul University in 1990, and her Ph.D. in
failure mechanisms based on fracture surfaceanalysis, microstructural analysis, and a basic stress analysis of the incident that caused failure.Students are responsible for sectioning, hardness testing, metallographic sample prep, andbackground research on the component and/or material. All project deliverables, including thefinal summary report, consist of presentations made to their peers in lab.Feedback from students indicates that they find the project to be a valuable part of the course.The students make noticeable improvements in their presentation skills over the course of thequarter. In some cases, the in-lab presentations lead to discussions of different failure modes orloading scenarios among the students. Interviews with graduating
J Krause, Arizona State University Stephen Krause, Arizona State University Stephen J. Krause is Professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, design and selection of materials, general materials engineering, polymer science, and characterization of materials. His research interests are in innovative education in engineering and K- 12 engineering outreach. He has been working on Project Pathways, an NSF supported Math Science Partnership, in developing modules for Physics and Chemistry and also a course on Engineering Capstone Design. He has also co-developed a Materials Concept Inventory for
, Mississippi State University Braden T. Smith obtained a bachelors degree in Civil Engineering from Louisiana Tech University. He is currently a graduate student in the Civil and Environmental Engineering Department at Mississippi State University who is concurrently enrolled in the masters and doctoral degree programs and recieved the 2015 Construction Materials Research Center Teaching Assistant Award. Page 26.832.1 c American Society for Engineering Education, 2015 Hands on Development of Communication Skills Within an Undergraduate Construction Materials