Cal Poly Pomona. He is an Associate Professor of Mechanical Engineering at California State Polytechnic University (Cal Poly Pomona). Before joining Cal Poly Pomona, Dr. Jawaharlal founded and developed APlusStudent.com, Inc., an online supplemental education company focusing on K-12 math. He also served as a faculty at Rowan University, NJ and General Motors Institute (renamed as Kettering University), MI. Dr. Jawaharlal is recognized as an outstanding educator for his innovative and engaging teaching pedagogy. Page 12.43.1© American Society for Engineering Education, 2007 A General
AC 2007-2198: LABORATORY IMPROVEMENT: A STUDENT PROJECT TODEVELOP INITIATIVE AND INNOVATION AS A PERMANENT STATE OFMINDSorin Cioc, University of Toledo Sorin Cioc is an Assistant Professor of Mechanical Engineering in the Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), College of Engineering, University of Toledo. He received a Ph.D. degree in aerospace engineering from the Polytechnic University of Bucharest, Romania, and a Ph.D. degree in mechanical engineering from the University of Toledo. His main research and publishing area is tribology. He is a past recipient of the Wilbur Deutsch Memorial Award for the best paper on the practical aspects of lubrication
AC 2011-1108: A DIMENSIONAL ANALYSIS EXPERIMENT FOR THEFLUID MECHANICS CLASSROOMCharles Forsberg, Hofstra University Charles H. Forsberg is an Associate Professor of Engineering at Hofstra University, where he primarily teaches courses in the thermal/fluids area. He received a B. S. in Mechanical Engineering from Polytech- nic Institute of Brooklyn and an M. S. in Mechanical Engineering and Ph. D. from Columbia University. He is a Licensed Professional Engineer in New York State. Page 22.37.1 c American Society for Engineering Education, 2011 A Dimensional Analysis
information they would not have gained without the laboratory and retained it severalmonths after the course.IntroductionDirect familiarity with mechanical devices is highly desirable for engineering students. Manystudents entering engineering programs, however, lack such experience. There is a perceptionthat students today have less practical experience than those from past decades. After graduationmost engineers will at some point be designing or evaluating designs of actual equipment. Inorder to be effective they must be able to relate theory to hardware. Most engineering courses donot teach the workings of mechanical devices as complete systems integrated with otherconcepts. Piston-cylinder devices, for example, are considered extensively in
AbstractIn a great majority of educational cases, “testing of materials” in the laboratory implies“destructive” techniques consisting of using universal testing machines (UTMs), where materialsare brought to a “failure condition” under tension, compression, shear, bending or torsion.Common objectives associated with these types of tests are: the evaluation of materials moduli ofelasticity and rigidity, yield strength, strain, ultimate strength, etc. In engineering practice,however, “in-situ” nondestructive testing (NDT) of materials are highly preferable, in order toevaluate rapidly the condition, failure potential, usefulness and serviceability of engineeringmaterials. Thus, nondestructive testing of materials ought to be an essential ingredient
AC 2011-731: LEARNING IN LABORATORY COMPLIMENTS TO LEC-TURE COURSES VIA STUDENT DESIGNED AND IMPLEMENTED EX-PERIMENTSJohn M Mativo, University of Georgia Taught and researched at university level for 16 years of which 6 served as department chair. Subject area involvement in teaching and research were in engineering education; product development and manufac- turing; and energy systems. Member of ASME, ASEE, ITEEA and Sigma Xi.Natasha Smith, University of Southern Indiana Page 22.1005.1 c American Society for Engineering Education, 2011 Learning in Laboratory Compliments to
theend of this article). It is the inaugural experiment undertaken for this course, and it is typicallyperformed during the second week of an academic term since the necessary background materialis reviewed during the laboratory session of the first week. This activity lends itself well to thisplacement within the laboratory schedule because it involves the unforced (or ‘free’) vibration ofa single-degree-of-freedom (SDOF) system that is almost undamped, so it essentially illustratessimple harmonic motion. Also, it does not depend upon advanced concepts or principles whichare covered at later stages in the course, yet it is easy to perform and does not require expensiveequipment or elaborate instruments.Before they perform the experiment, the
and one agreed with achieving thatlearning outcome.From an engineering education research standpoint, it would be very useful to compare thecourse learning outcomes with and without the laboratory component. Unfortunately there wasno lecture-only vibrations course taught before the lab was developed at USI that could be usedfor comparison. Also, it would not be fair to current students to intentionally teach the vibrationscourse without a hands-on laboratory component.Table 1: Assessment of some of the laboratory learning objectives as evaluated for the 2009 fall semester.Each student evaluated each objective as 1 for strongly disagree, 2 for disagree, 3 for neutral, 4 for agree, and5 for strongly agree. The average score is based on 7
AC 2010-48: DESIGN OF A MULTI-MODE FINITE-DIFFERENCE HEATTRANSFER PROJECTMichael Maixner, United States Air Force AcademyWilliam Parker, Air Force Research Laboratories Page 15.358.1© American Society for Engineering Education, 2010 Design of a Multi-Mode Finite-Difference Heat Transfer ProjectAbstract: The development of a comprehensive inite-difference project at the end of a heattransfer curriculum is described. The problem requires evaluation of the school’s football ieldturf heating system, incorporates all of the major heat transfer modes (convection, conduction,and radiation), and requires students to investigate both steady state and transient versions ofthe problem
Paper ID #33934A Low-cost Materials Laboratory Sequence for Remote Instruction thatSupports Student AgencyDr. Matthew J. Ford, Cornell University Matthew Ford received his bachelor’s degree in mechanical engineering and materials science from the University of California, Berkeley, and went on to complete his Ph.D. in mechanical engineering at North- western University. After completing an internship in quantitative methods for education research with the Center for the Integration of Research, Teaching, and Learning (CIRTL), he joined the Cornell Active Learning Initiative as a postdoctoral associate. His teaching
of finite element analysis.Dr. Samuel D. Daniels P.E., University of New Haven Dr. Daniels is an associate professor of mechanical engineering with more than 20 years of experience teaching laboratory classes. He also teaches in the multidisciplinary engineering foundation spiral cur- riculum at the University of New Haven. Research interests are in engineering education and renewable energy systems. c American Society for Engineering Education, 2020 A Three-course Laboratory Sequence in Mechanical Engineering as a Framework for Writing in the DisciplineAbstractThe ability to communicate effectively is very critical to engineering graduates to prepare themfor the workplace
Polytechnic Institute and State Universityhas been using, for several years now, a problem-solving approach to teach undergraduatelaboratories4. At Central Connecticut State University, the problem-solving approach wasapplied5 in order to develop and improve important skills in the students through laboratory Page 14.133.3experiments. The students were given limited guidance to develop a projectile device. Theexperience was aimed at giving students the possibility of guided practice without clearlydefined boundaries. The author reported positive outcomes in terms of intra-teamcommunications and organizing.According to another study6, supplementing
Paper ID #29731Work In Progress: A System-Level Approach for an IntroductoryMechatronics Laboratory Course for Undergraduate Mechanical Engineer-ingStudentsMr. Karnveer Gill, Greensea Systems Inc. Karnveer Gill received his B.S. degree from San Francisco State University in Electrical Engineering. In his time at San Francisco, he worked as an undergraduate teaching assistant in Mechatronics as well as a research assistant in the Control for Automation and Rehabilitation Robotics Lab. He currently works in the marine robotics industry as a Junior Robotics Engineer at Greensea Systems Inc. His current research interests
a Multidisciplinary Mechanical Design Laboratory Sequence based on Faculty ResearchAbstractResearchers have shown that the incorporation of hands-on design projects in the first two yearsof college provides mastery that increases the likelihood of success in engineering [1-8].Integrating real world design problems, based on faculty on-going research, into the curriculumduring the freshman years is without a doubt extremely beneficial; however the process requiresa heavy commitment in faculty time and sometimes resources.This paper discusses preliminary results of introducing faculty on-going research toundergraduate students, in a form of a lab sequence, focusing on student-centered approachessuch as active cooperative
Paper ID #25255Board 100: Enhancement of a Thermo-Fluid Laboratory Course: Focus onTechnical WritingDr. Kamau Wright, University of Hartford Kamau Wright is an assistant professor of mechanical engineering at the University of Hartford. He spe- cializes in thermo-fluids and plasma engineering. His technical research interests include applications of high voltage plasma discharges to liquids and wastewaters; plasma decomposition of carbon dioxide; foul- ing prevention and mitigation for heat exchangers; oxidation of organic matter in water; and inactivation of bacteria using high voltage plasmas.Dr. Paul E Slaboch
Course With Emphasis On Embedded Control " Proceedings of the 2010 ASEE Annual Conference & Exposition, Louisville, Kentucky, 2010.[3] A. Rubaai, "Laboratory Innovations In Undergraduate Control Engineering Education," Proceedings of the 2010 ASEE Annual Conference & Exposition, Louisville, Kentucky, 2010.[4] S. D. Bencomo, "Control learning: present and future," Annual Reviews in Control, vol. 28, no. 1, pp. 115-136, 2004.[5] R. Rabb and D. Chang, "Interdisciplinary Teaching Techniques And Learning In Dynamic Modeling And Control," Proceedings of the 2008 ASEE Annual Conference & Exposition, 2008.[6] A. St. Leger, "A Multidisciplinary Undergraduate Alternative Energy Engineering
subject matter.3 Using toys for teaching is not novel;4 neither is usingbuilding blocks, cars, robots, and many other games to connect concept with practice in lab5,6,7,8,9but those efforts are usually targeted toward youth. This work is applies toys from childhood tocollege level dynamics concepts to show sophistication of science in the simplicity of play. Page 24.839.2The professors also benefit from the ease with which these laboratories can be transported. Mostof the laboratories are small enough to fit in a briefcase and can be assembled or disassembled ina minimal amount of time. This not only allows for easy transport and storage, but
control for the bioreactor system.Specifically, the pH of the fluid is targeted next as it directly affects the growth of the tissue.Thus, the opportunities for continually updating the laboratory while simultaneously aiding inthe research objectives of the experiment are numerous. This experiment will also be utilized inother courses with an emphasis on the integrating concepts together for students.Since the students’ reaction to the lab and project was a positive one, it seems most appropriateto recommend this method to other teaching establishments. However, several challenges existfor initiating a laboratory and program like the one presented above. One challenge for theprofessor will be to judge how much instruction students will need. Thus
educational materials andlaboratory exercises for fundamental mechatronics and controls education. Students learnmathematical control theory, board-level electronics, interfacing and microprocessorssupplemented with educational laboratory equipment 1,2,3 The current curriculum tends to have acompartmentalized approach with separately taught subjects of abstract control theory,kinematics, dynamics, electronics, programming and machine design. The educational laboratoryequipment such as balancing an inverted pendulum or a ball-on-beam, LEGO robots followinglines or solving a maze are some examples. We use these platforms and heavily mathematicalcontent to “teach the fundamentals” and let them learn the industrial hardware aftergraduation.As new
AC 2010-147: IMPLEMENTING THE DIGITAL SPEED CONTROLLER TUNINGOF A LABORATORY ROTARY HYDRAULIC SYSTEMJohn Ficken, Milwaukee School of Engineering Page 15.688.1© American Society for Engineering Education, 2010IMPLEMENTING THE DIGITAL SPEED CONTROLLER TUNING OF A LABORATORY ROTARY HYDRAULIC SYSTEM Page 15.688.2ABSTRACTThe objective is to give the students practical experience in tuning a digital speed controller for arotary hydraulic system starting with the Ziegler-Nichols method. Digital controller basics andthe tuning method are discussed. In using this method the critical tuning area of system operationmust first be
Paper ID #22615Implementation and Assessment of a Remotely Accessible Laboratory in anEngineering Dynamic Systems CourseDr. Nolan Tsuchiya P.E., California State Polytechnic University, Pomona Dr. Nolan Tsuchiya is an Assistant Professor of Mechanical Engineering at California State Polytechnic University, Pomona. Dr. Tsuchiya obtained his Ph.D. from University of California Los Angeles (UCLA in the area of Dynamic Systems and Control). Dr. Tsuchiya teaches Controls Engineering, System Dy- namics, and Computer Programming courses using MATLAB/SIMULINK at California State Polytechnic University, Pomona. He is currently the
AC 2008-51: LABORATORY EXPERIMENT IN THE FREE CONVECTION OF AVERTICAL HEATED CONSTANT TEMPERATURE PLATE USING LABVIEWErik Bardy, Grove City College ERIK R. BARDY currently serves as Assistant Professor of Mechanical Engineering at Grove City College. His research interests include composite insulation design, orthopedic biomechanics and thermal regulation of the human body.Erik Anderson, Grove City College ERIK J. ANDERSON currently serves as Assistant Professor of Mechanical Engineering at Grove City College. His research interests include biofluid dynamics and biomimetic robotics with applications to marine vehicles
AC 2009-815: USE OF THE KNOWLEDGE AND SKILL BUILDER (KSB)FORMAT IN A SENIOR MECHANICAL ENGINEERING LABORATORYCharles Forsberg, Hofstra University Charles H. Forsberg is an Associate Professor of Engineering at Hofstra University, where he teaches courses in computer programming and the thermal/fluids area of mechanical engineering. He received a B. S. in Mechanical Engineering from the Polytechnic Institute of Brooklyn (now Polytechnic Institute of NYU), and an M. S. in Mechanical Engineering and Ph. D. from Columbia University. He is a Licensed Professional Engineer in New York State. Page
Paper ID #30769Transforming an Engineering Design Course into an Engaging LearningExperience using ePortfoliosMiss Taylor Tucker, University of Illinois at Urbana - Champaign Taylor Tucker graduated from the University of Illinois at Urbana-Champaign with a Bachelor’s degree in engineering mechanics and is now pursuing a master’s in Curriculum and Instruction through the Digital Environments for Learning, Teaching, and Agency (DELTA) program. She is interested in engineering design and lends her technical background to her research with the Collaborative Learning Lab, exploring how to improve ill-structured tasks for
AC 2007-1284: A NOVEL LABWORK APPROACH FOR TEACHING AMECHATRONICS COURSEIoana Voiculescu, City College of the City University of New York Professor Ioana Voiculescu received a Ph. D. degree in Mechanical Engineering from Politehnica University, Timisoara, Romania, in 1997 in the field of Precision Mechanics. She finished her second doctorate in 2005, also in Mechanical Engineering, but with the emphasis in MEMS. She has worked for five years at the U.S. Naval Research Laboratory, in Washington, DC in the area of MEMS gas sensors and gas preconcentrators. Currently, she is developing a MEMS laboratory in the Mechanical Engineering Department at City College of New York. She is an IEEE
Musical Analogies as a Teaching Tool for Engineering ConceptsAbstract This project investigated the inclusion of a music laboratory experience within theexisting core Mechanical Engineering curriculum at Lafayette College. Music is a naturaladdition to engineering curricula as it can easily be used to illustrate many different engineeringconcepts. This allows students to think about their engineering topics from a differentperspective, which helps to improve their understanding of these concepts. Additionally, byusing music as a teaching tool, students are also exposed to topics from the art of music.Students completed a survey both before and after the experience in order to reflect on theirlearning. On average, the students reported a
assessment data from laboratory activities, projects, and exams toevaluate student-learning outcomes.ChallengesMechanical engineering students are not naturally inclined to electronics and cannot relatethemselves to circuit analysis without appropriate activities. Most of them do not want to be inthis class. Lack of motivation was the major obstacle that the instructor faced while teaching thiscourse. Often students spoke out about their dissatisfaction for this specific course requirement.The instructor used real world applications and interdisciplinary design examples to motivatestudents. Students are encouraged to share their experiences with mechatronics applications.Examples range from smart table saw and computer numerical control (CNC
Turner text was well regarded bystudents mainly for the reasons for which the book was chosen in the first place: readability andreal world problems.Regarding the case study approach, the majority of the students commented favorably on thecase study approach overall and / or singled out an individual topic that interested them. Thecase study approach was an overwhelming success with the majority of the feedback beingfavorable and remarkably few negative responses. The just-in-time teaching technique wasfound to be seamless in its application with some favorable feedback on the flow and structure ofthe course.A common theme in the feedback was an appreciation for “hands on application”. The powerplant tour, the open channel laboratory, steam
Paper ID #14887Integrating Instrumentation and Mechatronics Education in the MechanicalEngineering CurriculumDr. Vidya K Nandikolla, California State University, Northridge Dr. Nandikolla has backgrounds in Mechanical, Electrical and Control Engineering and has developed courses in electro-mechanical areas to improve engineering curriculum. She has experience developing and teaching engineering core courses with hands-on experimentation and industry collaboration within classroom encouraging creativity and teamwork.Dr. Vibhav Durgesh, California State University, Northridge c American Society for
AC 2007-1114: IMPROVING TEACHING TECHNIQUE FOR OUTCOME BASEDFLUID MECHANICS COURSE AT AAMUZhengtao Deng, Alabama A&M University Dr. Z.T. Deng is an Associate Professor of the Department of Mechanical Engineering at Alabama A&M University in Huntsville, AL. Dr. Deng has an extensive background and research experience in Computational Fluid Dynamics numerical simulation in particular high-speed aerodynamics/flows with heat transfer phenomena. He earned his Ph.D., Aerospace Engineering, University of Tennessee, 1991. He is currently teaching fluid Mechanics, thermodynamics, heat transfer, gas dynamics and senior design classes.Cathy Qian, Alabama A&M University Dr. Xiaoqing (Cathy