Paper ID #32591Project Based Capstone Design Projects Amidst Covid-19 RestrictionsDr. Stephen Andrew Wilkerson P.E., York College of Pennsylvania Stephen Wilkerson (swilkerson@ycp.edu) received his PhD from Johns Hopkins University in 1990 in Mechanical Engineering. His Thesis and initial work was on underwater explosion bubble dynamics and ship and submarine whipping. After graduation he took a position with the US Army where he has been ever since. For the first decade with the Army he worked on notable programs to include the M829A1 and A2 that were first of a kind composite saboted munition. His travels have taken him
Paper ID #34236Engineering Capstone Senior Design Project as a Story-Building PlatfomDr. Hoo Kim P.E., LeTourneau University Hoo Kim, Ph.D., P.E., is an Assistant Professor in the School of Engineering and Engineering Technology at LeTourneau University. He received his B.S. and M.S. degrees from POSTECH, Pohang, South Korea, and his Ph.D. from the University of Texas at Austin. His professional interests include teaching in the area of electromagnetics and RF, integration of faith and engineering, and entrepreneurship in engineering.Dr. Paul R. Leiffer P.E., LeTourneau University Paul R. Leiffer, Ph.D., P.E., is a
make current efforts and practices more visible and accessible,including by identifying accredited programs, different formats and approaches tried, and types of capstonedesign experiences. Three phases of review were conducted with emphasis on multidisciplinary programs,multidisciplinary approaches, and multidisciplinary capstone, separately. The results reveal an increasing trendin the development of multidisciplinary engineering programs, the significant role of capstone projects infacilitating multidisciplinary engineering education, including integrated and real-world trends inmultidisciplinary capstone experiences. In addition, there are gaps in the literature that required more insightsregarding non-accredited programs, student outcomes
Investigating Team Roles Within Long-Term Project-Based Learning ExperiencesIntroductionExperiential learning continues to increase in undergraduate engineering education in order toprepare students for their professional careers. Project-based learning is becoming more commonthroughout engineering programs, with the additions of first-year cornerstone design experiencesand capstone senior design experiences. These experiences provide students with context fortechnical skills to be learned and applied as well as professional skills to be developed. While thefirst and final years of undergraduate engineering curricula have evolved significantly, themiddle years are often lighter in project-based learning with more emphasis on
majors in the industrial setting, were reported. Arduino has beenwidely used for teaching junior and senior level controls [3]-[9] and microprocessor courses [10],computer engineering capstone projects [11], and communication systems courses [12].Arduino has also been widely used in lower-division courses. For freshman engineering students,Arduino was used as a platform to teach programming, design, and measurement [13]. In thiswork, the authors transited the Living with the LAB curriculum, which used the Boe-Bot mobilerobotics and the Basic Stamp microcontroller, to the Arduino platform. In [14], Sullivan et al. usedArduino in an Introduction to Mechanical Engineering course where freshman students designedand implemented a cornerstone project
of design courses. E. CAPSTONE DESIGN COURSESAs of the 2018-19 academic year, each engineering department runs their own capstone coursewith students primarily from their own department. Starting in Fall 2019, however, the machineshop and makerspace will host 3 interdisciplinary capstone projects where students frommechanical and electrical engineering will work together. F. MASTERS DEGREE PROGRAMStarting in Summer 2020, the makerspace and machine shop will host a new 1-yearinterdisciplinary master’s degree between the College of Engineering, School of Business, theArt Department, the Information School and the School of Human Ecology. This program willteach students to work on interdisciplinary teams to create products and/or
program that provides opportunities and funding for undergraduate research,capstone projects, research with faculty, or the National Science Foundation (NSF) ResearchExperience for Undergraduates (REU) program. Study abroad programs may be approved asMulticultural experiences, but are not required; a student may also complete the MulticulturalCompetency through courses and/or experiences that do not involve traveling. Students maycomplete the Social Consciousness Competency through engagement in a variety of servicelearning opportunities including Engineering Projects in Community Service (EPICS),engineering outreach activities, and mentorship for First Lego League or other programs. Foreach of these competencies, when there is an option for
their results directly to the greater public. Engineers’ clearcommunication with these audiences ensures continuity in critical operations during times ofcrisis. Today’s engineering graduate must master effective communication skills to fosterproductive team dynamics, propose persuasive projects, provide valuable status updates tomanagement, and affect change within his or her organization—all while video conferencing.VMC, an alternative to face-to-face communication that occurs over an information technologyplatform, is positioned to occupy a more central role in engineering curricula.Preliminary analysis of student performance traits over three semesters indicates that studentscan measurably improve their presentation skills and interactions
strong mentor relationships post ● Internal students continuing based on REM (especially if at other institutions). May demonstrated progress include continuing mentoring relationship in school year ● Need earlier timeline for targeted recruiting ● Early engagement helps with capstone projects ● Inconsistent mentoring across participants ● Early training with mentors/mentees with enhanced training (EFRI-REM) ● Matching mentors/mentees ● Integrated learning into other ‘REU’ type programs● Sustaining research after the summer; ● Evaluation of
benefits of PR are broadly applicablewhenever students are producing non-routine work such as capstone projects, project-basedcourses, or constructivist activities.Cementing and Extending – PR provides twice the learning opportunities compared to InstructorReview (IR) because both the reviewer and the recipient are learning. The reviewer is arguablythe greatest beneficiary; they first cement factual knowledge and then extend their conceptualunderstanding as they consider the work of their classmates. To review a token, the reviewermust first understand what they have seen/heard, next compare it to their own knowledge, thenevaluate whether it is correct, and finally explain/justify their opinion. Reviewers’ cognitivedemands are consistent with
isneeded.The National Academies of Sciences (NAS) report [10] emphasizes that using a piecemealapproach to data science curriculum development may result in content coverage but also ‘lackeducational and cross discipline cohesion’. While programs need to address data science skills,they should also prepare students for the actual ‘data challenges they will face in their careers’[10]. The NAS report also calls out the need to include high impact educational practices such asfirst year seminars, undergraduate research, common intellectual experiences (common andintegrative core knowledge), writing intensive courses, collaborative projects and assignments,and capstone courses. Important findings to note within the NAS report [10] include enhancingthe
you choose to do?My interest in interdisciplinarity stems from my experiences as an undergraduate engineeringstudent. My senior capstone project involved working on an interdisc iplinary design projectfocused on designing and developing a vertical takeoff and lift system (VTOL). The problem wasdefined in the context of a 2040 urban rescue. There were four different disciplines involved—industrial and systems engineering, mechanical engineering, electrical and computer engineering,and aerospace engineering. Tensions arose throughout the project among the mechanical andaerospace engineers, including instances where I was left unsure of how I fit besides sharing myknowledge about anthropometric dimensions when designing with ergonomics in mind