theright message (messages about engineering) in front of middle and high school students.” Theframework for our Engineering Ambassador program was to establish criteria for theundergraduate to serve students in middle and high schools near Manhattan College.The Ambassador program was uniquely designed to engage engineers in education and educatorsin engineering. The combination of content and methods requires the collaboration that modelsfor students that learning is no longer competitive, but rather cooperative. A strong contentbackground for a teacher is a must. But, so is the need to provide pre-adolescents and adolescentswith the autonomy that characterizes growth and development typical of these age groups. Whilethere may be limitations on
American Society for Engineering Education, 2019 Developing and Assessing Authentic Problem-Solving Skills in High School Pre-Engineering StudentsIntroductionCritical thinking and problem solving (CT and PS) skills involved in solving authentic (real-world) problems are desirable for engineering students and practitioners. CT and PS go hand-in-hand, where achieving the end-goal or solving the problem requires decision-making aboutdisciplinary content to be used, discarding irrelevant information, devising a strategy andevaluating progress [1]. Among other reasons for students’ failure to persist in college STEMprograms, researchers [2] note that students’ lack the depth of knowledge, skills, and habits inproblem
beendesigned to provide such PD to prepare teachers to use mechatronics, robotics, andentrepreneurship to connect science and math with students’ contemporary interests. EffectiveSTEM PD supports transfer of training by immersing participants in content knowledge, allowsmodeling and practice of desired skills, promotes collaboration, and lasts for sufficient duration tohandle the cognitive demands of new learning [14-18]. These research-based practices of effectivePD have been adopted and embedded in a PLC [19], which, as a combination, has been shown toengage teachers in applying PD effectively to the classroom.PBL can be effectively explored using the exciting fields of mechatronics (synergistic integrationof mechanical engineering, control theory
. He teaches undergraduate design, thermo- dynamics, and engineering experimentation and is the faculty adviser to both the Formula SAE Team (Cooper Motorsports) and Pi Tau Sigma Honor Society.Mr. Estuardo Rodas, Cooper Union Estuardo Rodas is Adjunct Professor of Mechanical Engineering at the Cooper Union for the Advance- ment of Science & Art where he is also Project Coordinator of the Mechanical Engineering Lab. He is adviser for Cooper’s Formula SAE team and a Lead Instructor for the summer STEM program for high school students. Among his other projects, Prof. Rodas designed the Ike Heller Center for Integrated Manufacturing and Robotics at Brooklyn Tech, collaborated in construction and design of the
studies from Old Dominion University in 2015. Isaac’s consultancy, HEDGE Co., focuses on working with formal and informal educators to grow the numbers of females pursuing engineering or technology careers. Additionally, she is a conferred Fellow of the Society of Women Engineers. c American Society for Engineering Education, 2019 Does How Pre-College Engineering and Technology Role Models See Themselves Relate to Girls' Engagement in the Fields? [Research to Practice]IntroductionSince the Equal Pay Act in 1963, female participation in engineering has increased only eightpoints, from less than 5 to 13% [1], while, in the fields of medicine, female participation
careers, and are focused on those who are underrepresented in STEM and underserved. c American Society for Engineering Education, 2018Promoting the STEM Pipeline and Enhancing STEM Career AwarenessThrough Participation in Authentic Research Activities (RTP, Diversity) AbstractTo promote the STEM (Science, Technology, Engineering and Mathematics) pipeline andenhance the participation of students who have been historically underrepresented in STEMfields in the U.S, a team of faculty investigators with diverse expertise in STEM, education,public health and medicine have been working collaboratively on a National Institutes of Health(NIH)-funded STEM education project
Curriculum, Teaching, and Educational Policy graduate program at Michigan State University in 2010. Her current research focuses on three key areas: (1) de- signing, developing, and conducting validation studies on assessments of content knowledge for teaching (CKT) science; (2) examining and understanding validity issues associated with measures designed to assess science teachers’ instructional quality, including observational measures, value-added measures, student surveys, and performance-based tasks; and (3) extending and studying the use of these knowl- edge and instructional practices measures of science teaching quality as summative assessment tools for licensure purposes and as formative assessment tools
chapters. She is a former board member of the National Association of Research in Science Teaching and past president of the Association for Science Teacher Education.Dr. Elizabeth Ring-Whalen, St. Catherine University Elizabeth A. Ring-Whalen is an Assistant Professor of Education at St. Catherine University in St. Paul, MN. She holds a PhD in Curriculum and Instruction - STEM Education from the University of Min- nesota. Her research focuses on STEM education and what this looks like in PreK-12 classrooms and explores teachers’ beliefs of integrated STEM as well as how these beliefs influence teachers’ practices and student achievement in the classroom. Alongside this research, she has worked to explore the atti
community engagement. Moreover, the curriculum incorporateshuman-centered design and key engineering processes to foster engineering habits of mind suchas systems thinking, optimism, and ethical consideration in engineering as well asentrepreneurial mindsets such as the three C’s (creativity, collaboration, communication).Throughout EPICS High, students continually explore potential problems in the community thatcan be solved by the skills they are learning in the classroom. Ultimately, students learn to workwith members of the community to create engineering solutions that are designed to address real-world problems. Preliminary research shows that EPICS High promotes positive outcomesamong high school students9,10. In a small study on an
for initiatives to im- prove the professional skills of engineering graduates. LaMeres teaches and conducts research in the area of computer engineering. LaMeres is currently studying the effectiveness of online delivery of en- gineering content with emphasis on how the material can be modified to provide a personalized learning experience. LaMeres is also researching strategies to improve student engagement and how they can be used to improve diversity within engineering. LaMeres received his Ph.D. from the University of Col- orado, Boulder. He has published over 90 manuscripts and 5 textbooks in the area of digital systems and engineering education. LaMeres has also been granted 13 US patents in the area of
engineering team. The focus of this team is on providing a consistent, comprehensive, and constructive educational experience that endorses the student-centered, professional and practice- oriented mission of Northeastern University. She teaches the Cornerstone of Engineering courses to first- year students as well as courses within the Civil and Environmental Engineering Department. She is a recent recipient of the Outstanding Teacher of First-Year Students Award and is interested in research that compliments and informs her teaching. c American Society for Engineering Education, 2020 Evaluating Student Success in a Pre-College General Engineering Program
Paper ID #23808The Effectiveness of a Multi-year Engineering EnrichmentDr. Linda Hirsch, New Jersey Institute of Technology LINDA S. HIRSCH is the Assistant Director for Research, Evaluation and Program Operations for the Center for Pre-College programs at New Jersey Institute of Technology. Dr. Hirsch has a degree in educa- tional psychology with a specialty in Educational Statistics and Measurement from the Graduate School of Education at Rutgers University. She has been involved in all aspects of educational and psychological research for over 20 years. Dr. Hirsch has extensive experience conducting longitudinal research
study goes on to add that itis still a problem in a remote classroom. This means that educators have to keep working on howto make students' experiences better. Analysis from the data showed that remote learningimpacted students’ ability to support each other in project-based learning processes. This papershows that having both cooperative and individual learning-based pedagogies may be moreeffective for high school engineering students. This year, several more high schools adopted theE4USA engineering curriculum in hybrid classrooms. Additional data is being gathered tofurther explore the themes that emerged from this study. Specifically, the research team willexplore the nuances of institutional type (rural, urban, all girls, etc
the sciences.Dr. Jean S Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Assistant Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology, postgraduate training in Computer Systems Engineering, and many years of experience teaching and developing curriculum in various learning environments. She has taught technology integration and teacher training to undergrad- uate and graduate students at Arizona State University
, as well as different age groups or ethnicities.Summer Engineering ProgramThis paper discusses a Department of Education-funded , GEAR UP project aimed at increasinginterest in STEM for middle and high school students and to prepare them for college. Thesummer program targets 6 to 12th grade students with a focus on students from underrepresentedminorities to participate in the project.The focus is on the evaluation of the pilot year of a summer engineering program wheresecondary students performed engineering activities in collaboration with engineering researchfaculty, as well as graduate and undergraduate students in various engineering fields. Studentsattending the camp had just completed 7th grade. Because of the intense nature of the
chemistry. He is currently involved in a research project that aims to develop an observation protocol for STEM lessons and relevant training materials that are directed at improving the quality of STEM instruction in K-12 spaces. His primary research interests include assessment of student learning in STEM contexts, exploration of how integrated STEM is enacted in the secondary level (especially in chemistry classes), and assessment and promotion of students’ conceptual understanding of chemical concepts.Khomson Keratithamkul, University of Minnesota Khomson Keratithamkul is a PhD candidate in the STEM Education program at the University of Min- nesota. His research interests primarily revolve around K-12 STEM education
STEM education. In her dissertation work, she developed and validated a new interdisci- plinary assessment in the context of carbon cycling for high school and college students using Item Re- sponse Theory. She is also interested in developing robotics-embedded curricula and teaching practices in a reform-oriented approach. Currently, a primary focus of her work at New York University is to guide the development of new lessons and instructional practices for a professional development program under a DR K-12 research project funded by NSF.Sonia Mary Chacko, NYU Tandon School of Engineering Sonia Mary Chacko received her B.Tech. degree in Electronics and Communication Engineering from Mahatma Gandhi University
University as a research assistant. His research interests include designing specialized hardware to accelerate applications on advanced FPGA platforms, developing network and communication algorithms on modern USRP/SDR platforms and prototyping ultra-low power nodes for IoT applications. Currently his main focus is on power consumption and performance optimizations for mmWave and THz communications. As part of the ’COSMOS educational team’, he designs exciting and interactive problem-based STEM learning experiences for K–12 students and teachers. The team organized a teacher professional development program, using wireless communications and NGSS to create hands-on engineering lessons and promote STEM. He was part of one
-Teacher Identities: In addition to identity issues regarding area of specialization amongthe teachers, similar concerns were noted among the facilitators. As specified previously, the fourdedicated facilitators for the PD were graduate students and postdoctoral researchers inengineering fields. However, as the PD progressed, the facilitators began to develop a greaterappreciation for the work done by the teachers. This illustrates an effective, bidirectionaloperationalization of social capital with facilitators and teachers learning from one-another.For each of the aforementioned themes, Table 2 below provides examples of key issues affectingteachers during the PD while Table 3 provides examples of changes induced and observed in boththe
guidelines, and effective pedagogical approachesto promote the achievement of desired outcomes.The LEGO Mindstorms robot kit is widely used in K-12 STEM education. For example, in onerecent effort [22], it was used as a technological tool to aid in the pedagogy of physics, biology,and math lessons, resulting in teachers’ readiness to implement technology as a pedagogical toolin their classroom. The researchers in [22] claimed that a robotics-based learning methodologyhelps students readily visualize and access abstract STEM content knowledge. Recent studies haveadditionally explored varied pedagogical methods for STEM learning with robotics, e.g.,scaffolding [23], visual modeling [24], and project-based learning [25,26], among others.Assessment of
beapplied to engineering education, the nature of engineering design is distinct from other STEMdomains. As such, teacher must be able to support and evaluate students’ learning fromengineering design problems, in part, by determining the quality of students’ solutions (Brophy,Klein, Portsmore, and Rogers, 2008). Prior research illustrates the wide range of contentknowledge and pedagogical skills for engineering design among K12 teachers. Hsu, Purzer, andCardella (2011) showed that many teachers do not feel prepared to teach engineering designdespite acknowledging its importance in K12 education. As a result, K12 teachers needprofessional learning experiences with grade-band appropriate content knowledge alongsideengineering design processes