residency, fellowship and postdoctoral training at Harvard. Her research focuses on development of novel antimicrobials and polymeric delivery devices to treat infections with multi-drug resistant pathogens, as well as STEM and community outreach. c American Society for Engineering Education, 2018 Paper ID #23942Dr. Robin S.L. Fuchs-Young, Texas A&M University Dr. Fuchs-Young is a Professor in the Department of Molecular and Cellular Medicine in the College of Medicine at Texas A&M University. The scope of her laboratory research includes studies of breast can- cer health disparities and the bio
engineering, incorporating laboratory experiences into traditional coursework, and bringing awareness of electrochemical engineering to chemical engineers. Biddinger’s research involves applications of green chemistry and energy utilizing electrocatalysis, batteries, and novel solvents. c American Society for Engineering Education, 2019 Program evaluation of a high school summer bridge program in chemistry and engineeringAbstractIn this paper we evaluate a summer college preparatory program for New York City high schoolstudents housed at Bronx Community College. The program was titled “Introduction to EnergyTechnology” and it focused on teaching chemistry and engineering
sessions aimed to help thestudents gain an understanding about the different fields of engineering that can be studied in orderto be part of the transportation workforce; that is, other engineering fields are related totransportation not only Civil Engineering.Hands-On Laboratory Experimental Sessions The goal of these sessions was to provide the students with a fun, interactive learningenvironment in which they can discover different aspects of transportation engineering. All of thehands-on sessions were designed so that the students were engaged in the session through buildingor conducting an experiment. The session related to building and testing a bottle rocket is oneexample of such activities (Table 1: Week 1, Friday). In this session
State University. c American Society for Engineering Education, 2019An Engineering Grand Challenge Focused Research Experience for Teachers (RET) Program: Purpose, Outcomes and Evaluation (Evaluation)AbstractThis paper provides details on administering a NSF-funded Research Experiences for Teachers(RET) Site grant. The experience was organized with stratified laboratory research teams solvingEngineering Grand Challenge-focused problems. Described here are the research questions andoutcomes related to the development and impetus behind stratified teams, and how literature froma variety of disciplines suggests diversity of thought and viewpoint are strongly correlated to highfunction teams. Detailed also are the
, was a seven week long summerresearch experience designed for high school students entering 10-12 th grade. The main goal ofthe program was to provide young women and underrepresented minority high school studentswith a laboratory research experience and inspire them to enter college and pursue STEM degrees. Each summer, students from local high schools were selected to participate in laboratoryresearch as scholars under the supervision of a mentoring graduate student and faculty member.Each team composed of two YSs and their graduate mentor tackled problems innanomanufacturing and made significant contributions to ongoing research projects. At the endof the program, each high school student gave a final presentation of the results to
Paper ID #23445Hk Maker Lab: Creating Engineering Design Courses for High School Stu-dents (Evaluation -or- Other)Dr. Aaron Kyle, Columbia University Aaron Kyle, Ph.D., is Senior Lecturer in Biomedical Engineering at Columbia University. Dr. Kyle teaches a two semester series undergraduate laboratory course, bioinstrumentation and Senior Design. Senior Design is Dr. Kyle’s major teaching focus and he has worked diligently to continually enhance undergraduate design. He has taught or co-taught the BME Design class since January 2010. Dr. Kyle has spearheaded the incorporation of global health technologies into Senior
Paper ID #30964University-Designed Middle School Science Experiences Aligned with NGSSMrs. Zahraa Stuart, Stony Brook University Zahraa Stuart received Bachelor of Engineering in electrical engineering from Stony Brook University in 2016.In 2017, she joined the PhD program in Electrical engineering statistical signal processing. Zahraa design, develop and instruct engineering teaching laboratories for both high school and middle school students and teaches since 2016.Dr. Angela M Kelly, Stony Brook University Angela M. Kelly is an Associate Professor of Physics and the Associate Director of the Science Education
selection will be addressed along with project identification,scheduling, and the presentation of outcomes.During the admissions process, students are divided into sections that range from 16-24 studentseach. Every section has a different theme in the STEM fields, centered in the area of expertise ofthe faculty lead instructor, which can range widely in subject. Students rank their top twosection topics in the application and nearly 80% of students are offered their first-choice section.Since 2014, a section entitled, ‘Racecar Design through Engineering Experimentation,’ orRacecar, has been offered with section enrollment around 25 students, which representsclassroom and laboratory capacity. Unlike most other sections, Racecar i s taught
students gain an understanding of the different fields of engineering thatcan be studied in order to be part of the transportation workforce; that is, how other engineering fields arerelated to transportation, not only Civil Engineering.Hands-On Laboratory Experiments The goal of the hands-on laboratory and experimental sessions is to provide students with a fun,interactive learning environment in which they can discover different aspects of transportation engineering.All the hands-on sessions are designed so that the students are engaged in the session through building orconducting an experiment. A session related to building and testing a bottle rocket is one example of suchactivities. In this session (Build a Bottle Rocket), the
Professor (Lecturing) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory and freshman design laboratory. His research interests focus on undergraduate education, targeted drug delivery, photobioreactor design, and instrumentation.Prof. Jason Wiese, Jason Wiese is an Assistant Professor in the School of Computing at the University of Utah. His research takes a user-centric perspective of personal data, focusing on how that data is collected, interpreted, and used in applications. His work crosses the domains of
’ knowledge in a variety of areas. Students who had just completed either the10th or 11th grade are recruited via a program web site or by contacting guidance counselors,STEM teachers, and principals. Social media was also used as a recruitment tool. Applicants areevaluated using selection criteria that include high school transcripts and an essay where studentsdescribe their reasons for wanting to attend.STEM-SEP has been held on the campus of Penn State University-Harrisburg each June since2016. The workshop sessions provide participants with active learning opportunities throughparticipation in laboratory-style experiments and team activities. Such activities have shown toimprove retention of women in engineering majors, a key feature since female
suspected that the global learners who were not asinterested in science (particularly females) responded well to the GBL module. It is suspectedthat most of the students who commented on the fact that subject material should be taughtbefore the GBL module was executed, were sequential learners. This may be verified when morepost survey results are obtained. It should be noted that if used in conjunction with the PLMS, alllearners would have the opportunity to access content related material at any point during thegame development.The major challenge noted with the GBL module is the fact that the project was not a suitablereplacement for the laboratory component of the class and students suffered as a result. It shouldbe noted that in general, the
Paper ID #31726Building the Bioengineering Experience for Science Teachers (BEST)Program (Work in Progress, Diversity)Dr. Miiri Kotche, University of Illinois at Chicago Miiri Kotche is a Clinical Professor of Bioengineering at the University of Illinois at Chicago, and cur- rently serves as Director of the Medical Accelerator for Devices Laboratory (MAD Lab) at the UIC Innovation Center. Prior to joining the faculty at UIC, she worked in new product development for medi- cal devices, telecommunications and consumer products. She also serves as co-Director of the Freshman Engineering Success Program, and is actively
University of Central Florida and is anticipated to graduate in Spring 2019. He has two masters degrees one in mechanical engineering from UCF and another in aerospace engineering form Sharif University of Technology. He currently works in the Nanofabrication and BioMEMS Laboratory at UCF and his research areas include Nanofabrication, Microfluidics, Sensors and Actuators, Computational Fluid Dynamics, Optimization, and Mathematical Modeling. c American Society for Engineering Education, 2019Running Head: Project CoMET RETCollaborative Multidisciplinary Engineering Design Experiences for Teachers (CoMET) Train the Trainer Model of Supports Type 5 Work in ProgressThe K-12 learning environment is
consisted of the application of Monte Carlo techniques to model a germanium detector for use in astrophysics studies. The study was part of the Gamma Ray Observatory program on the WIND satellite. In addition, the Monte Carlo technique was used to model the geometry of the Spectrometer for Integral (SPI) of the International Gamma Ray Astrophysics Laboratory, INTEGRAL. This project was launched in October 17, 2002. Cur- rent research activity has been in the area of Aviation Safety. In particular, the development of monitoring technologies to enable detection of unsafe behaviors in the flight deck. Have made presentations in in- ternational forums in Serbia, Japan, Spain, Australia and Ireland. Graduated with a B.Sc
on applications of nanotechnology and materials scienceconcepts. Two annual events crown the intervention: a) an annual club meeting at the universitycampus, and b) a Nanodays event, where each club conducts nanotechnology demonstrations attheir own schools. Furthermore, a group of high school students and teachers is selected toparticipate in a 4-week Summer Research Program, in the Center’s laboratories. Collegeadmissions data show that 75% (N=12) of the research summer program participants and 42% ofstudents admitted from schools with MSE clubs have enrolled at UPRM, with a 94% second-year retention rate. For the schools with MSE clubs, between 49% and 75% of students whochose to major in Science, Engineering or Technology programs were
for the parents’ and students’ decisions to enroll in the campsand further act as an outline for the camp itself. Summer 2014 – Physical Sciences This camp is for students with a passion for physical sciences and engineering. By the end of the week you will be able to impress your family and friends with cool experiments and scientific facts! This camp will explore many fascinating topics including experimentation with LEGO Mindstorm Robotics. Participants will get a chance to work in University of Calgary classrooms and laboratories and they will be taught by University of Calgary students in the faculties of Science, Engineering and Education. A portion of the activities are based on the
, inquiry-based K-12 STEM curricula (ii)Aerospace Education Laboratory (AEL) (iii) Family Connection (FC) – parental/guardianinvolvement and outreach.The program team developed curriculum enhancement activities (CEAs) by adopting a well-established NASA STEM curriculum with problem-based learning at its core and integrated3D printing technology, sensor-based measurement systems, and mini Unmanned AerialVehicle (UAV) design activities to enhance authentic and experiential learning experiences.Integration of these technologies added an additional dimension to the value of scientificinquiry and shows how to apply scientific knowledge, procedures and mathematics to solvereal problems and improve the world we live in. The curriculum supported the
Standards and Technology.Dr. Peter C. Nelson, University of Illinois, Chicago Peter Nelson was appointed Dean of the University of Illinois at Chicago’s (UIC) College of Engineer- ing in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Depart- ment of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, manufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $30 million in research grants and con- tracts on issues of
Polymer Physics from the University of Abou Bekr Belka¨ıd, UABT (Tlemcen, Algeria). Dr. Hakem taught and supervised students as Professor at UABT until she joined the Department of Materials Sci- ence Engineering at Carnegie Mellon University (CMU) as Visiting Professor in 2005. Before joining CMU, Dr. Hakem made several short and long-term visits as a Visiting Professor at l’Institut Charles Sadron (Strasbourg, France), Max-Planck Institute for Polymer Research (Mainz, Germany) and Argonne National Laboratory (Argonne, USA) where she worked on mean field theory applied to uncharged poly- mers and polyelectrolyte systems and small-angle neutron scattering of amphiphilic polymer systems in the presence of electrolytes
be able to: 1. Define the term research. 2. Describe examples of research being conducted in STEM fields and the potential impact of that research on society. 3. List examples of career opportunities available in various STEM fields. 4. Collect scientific data in a laboratory setting. 5. Analyze and interpret simple scientific data generated in the laboratory. 6. List and describe the steps of the scientific method. 7. List and describe the steps of the engineering design process. 8. Compare and contrast the scientific method and the engineering design process. 9. Describe the difference between quantitative and qualitative data and provide examples of situations where each is used. 10. Demonstrate
course, which consisted of lectures and hands-on activities, met twice a weekfor fifteen weeks. Each session included both a lecture and lab (hands-on) component, and wasthree hours long. The research course introduced students to current research techniques, methods, andapproaches through the lens of an astronomy-related project. Students learned about thescientific method, making observations, and drawing unbiased conclusions. Workshops includedbuilding different types of telescopes and detecting invisible electromagnetic radiation. Othertopics included laboratory safety, research integrity, literature review, analysis and interpretationof data. Students learned to use software to analyze and present data. Initially, the students
Paper ID #26274Board 122: Using Engineering Design to Increase Literacy and STEM Inter-est Among Third Graders (Work in Progress, Diversity)Dr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She
(IBBME), University of Toronto. In addition to instruction, she has acted as the Associate Director, Undergraduate Programs at IBBME as well as the Associate Chair, Foundation Years in the Division of Engineering Science. Currently an Associate Professor, Teaching Stream, she serves as faculty supervisor for the Discovery program and is program co-director for the Igniting Youth Curiosity in STEM Program. Dawn was a 2017 Early Career Teaching Award recipient at U of T and was named the 2016 Wighton Fellow for excellence in development and teaching of laboratory-based courses in Canadian UG engineering programs. c American Society for Engineering Education, 2020 Discovery
has grown to serve over 720 participants each summer with multiple one-weekfully residential and virtual sessions. Funding support from industries such as NorthropGrumman, Raytheon, and Boeing has increased allowing EPIC to serve more low-incomeparticipants.Due to the recent COVID-19 pandemic, in 2020, when most universities simply shut down theirengineering summer pre-college programs, EPIC swiftly changed its programming to a fullyvirtual program and served over 400 participants. EPIC created a new curriculum, activities,training, and planned on how to solve issues such as participants' ability to use school-issued orpersonal chromebooks. Intensive home-laboratory activities with mechanical, electrical, andsoftware elements were created
, with her B.A. in Education with an additional emphasis in English. In addition to being an avid sports fan, Kristine spends her free time with her dog and volunteering with her church, the Cary HOSTS program at Edward Cary Middle School, and the Presbyterian Children’s Home and Services.Dr. Kenneth Berry, Southern Methodist University Dr. Kenneth Berry is the Associate STEM Director at the Caruth Institute in the Lyle School of Engi- neering at Southern Methodist University (SMU). He has worked as an education specialist at NASA’s Jet Propulsion Laboratory until he received his doctorate in Educational Technology in 2001. He then taught at the Michael D. Eisner School of Education at California State University at
Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications. c American Society for Engineering Education, 2018 A Project-Based Approach to Develop Engineering Design Process Skills Among High School Students (WIP)IntroductionImplementing engineering curriculum in high school improves student learning and achievementin science, technology and mathematics, increases awareness of the contributions of engineers tosociety, and promotes student pursuits of STEM careers [1]. In a 2009 report, the Committee onK-12 Engineering Education from the National
from an internal grant opportunity by a group ofalumna and friends of WPI to support women in STEM [1]. In the very first iteration of theprogram, the goal was to enable high school women to engage in hands-on STEM research instate of the art research laboratories under the guidance of women graduate student role modelsfor a semester (10-12 weeks).By having the research projects supervised by graduate students, we did not have to burdenfaculty members (although they needed to approve their graduate student’s participation in theprogram) and the graduate students had opportunity to develop their skills in scoping a shortresearch project and mentoring younger students. Furthermore, to compensate the graduatestudents for their time and effort, a
atCCSU program. A prototype helicopter simulator was developed and built by a faculty memberand his students at the host university through a National Aeronautics and Space Administration(NASA) research grant. Program participants, who are interested in operating a helicopter, aresupervised to "fly a helicopter" in a laboratory environment. Material testing instrument includesa series of demonstrations on steel and concrete mechanical property testing: a concretecompassion test, a steel impact test of, a steel fatigue test, and a steel tension test. Students aresplit into small groups and can operate testing apparatus to their comfort levels. Buildingexercise and competition is applied multiple times in the curriculum: a balsa wood bridge
her doctoral research, she conducts mechatronics and robotics research in the Mechatronics, Controls, and Robotics Laboratory at NYU.Dr. Sheila Borges Rajguru, NYU Tandon School of Engineering Dr. Sheila Borges Rajguru is the Assistant Director of the Center for K-12 STEM Education, NYU Tan- don School of Engineering. As the Center’s STEAM educator and researcher she works with engineers and faculty to provide professional development to K-12 STEM teachers with a focus on social justice. She is currently Co-Principal Investigator on two NSF-grants that provide robotics/mechatronics PD to science, math, and technology teachers. In addition, she is the projects director of the ARISE program. This full-time, seven