Paper ID #34128Developing a Pathway to Post-Secondary Study of Engineering forUnderrepresented Secondary Students (Work in Progress, Diversity)Miss Adrianne J. Wheeler, Project SYNCERE Adrianne is currently the Director of Programs at Project SYNCERE, a Chicago-based engineering ed- ucation nonprofit devoted to creating pathways of opportunity for underrepresented students to pursue STEM careers. She received her Bachelors of Science in Civil and Environmental Engineering from the University of Illinois at Urbana-Champaign and is currently working towards her Doctor of Educa- tion at DePaul University. Her interests are in
Paper ID #34262Middle School Capstone Engineering Projects (Work in Progress)Dr. Kenneth Berry, Southern Methodist University Dr. Kenneth Berry is a Research Professor at the Caruth Institute for Engineering Education (CIEE) in the Lyle School of Engineering at Southern Methodist University (SMU). He has worked as an education specialist at NASA’s Jet Propulsion Laboratory until he received his doctorate in Educational Technology in 2001. He then taught at the Michael D. Eisner School of Education at California State University at Northridge (CSUN). In 2009, he moved to Texas to work at the Science and Engineering Education
Paper ID #32581Caregivers’ Multiple Roles in Supporting their Child through anEngineering Design Project (Fundamental)Dr. Amber Simpson, State University of New York at Binghamton Amber Simpson is a Assistant Professor of Mathematics Education in the Teaching, Learning and Edu- cational Leadership Department at Binghamton University. Her research interests include (1) examining individual’s identity(ies) in one or more STEM disciplines, (2) understanding the role of making and tinkering in formal and informal learning environments, and (3) investigating family engagement in and interactions around STEM-related activities
Paper ID #32972Elementary Teachers’ Verbal Support of Engineering Integration in anInterdisciplinary Project (Fundamental, Diversity)Miss Sarah Catherine Lilly, University of Virginia Sarah Lilly is a PhD student in the Department of Curriculum, Instruction and Special Education at the University of Virginia. She holds a B.S. in Mathematics and English and an M.A.Ed. in Secondary Educa- tion from The College of William and Mary. Her research centers on STEM education, particularly using qualitative methods to understand the integration of math and science concepts with computational mod- eling and engineering design
Paper ID #33845Evaluation of virtual young scholar program with a focus on hands-onengineering design projects in a virtual setting (Evaluation)Dr. Elena Nicolescu Veety, North Carolina State University at Raleigh Elena Veety received the Ph.D. degree in electrical engineering from North Carolina State University, Raleigh, NC, in 2011. Her research focused on liquid crystal polarization gratings for tunable optical filters and telecommunications applications. Since 2011, she has been a Teaching Assistant Professor of Electrical and Computer Engineering at North Carolina State University. Currently, she is the Education
Paper ID #35042A Case Study on How Teachers’ Knowledge and Beliefs Influence TheirEnactment of the Project Lead The Way Curriculum (Evaluation)Dr. Mary K. Nyaema, The University of Illinois at Chicago Mary Nyaema is an educational consultant with the University of Illinois at Chicago. She earned a doc- toral education degree from University of Iowa. She has two years post doctoral experience in discipline based educational research and has taught high school science and mathematics. Her research interests include STEM Education, active learning, evidence based strategies and problem based learning.Dr. David G. Rethwisch, The
disciplines. She enjoys observing the intellectual and professional growth in students as they prepare for engineering careers. American c Society for Engineering Education, 2021High school students' perspective of project-based learning in online learning Olushola Emiola-Owolabi, Medha Dalal, Adam Carberry, & Oluwakemi Jumoke Ladeji-OsiasThe delivery mode of education for many high school students changed recently, confining students toattend classes virtually from home. Remote learning can sometimes give students fewer experientiallearning opportunities. A focus group discussion was carried out with 35 high school students to exploretheir perception of their learning
andstudents with several challenges. Teachers have found themselves quickly creating distancelearning materials to provide equal or greater educational opportunity and engagement as in-person instruction. This shift is met with parallel increased demand on students to independentlymanage their learning and coursework with the absence of in-person supervision, support, andpeer interaction. In this work, we describe our approach and observations in transitioningDiscovery, a secondary student science, technology, engineering, and mathematics (STEM)education program, to a virtual platform.Developed by graduate students in 2016, Discovery was designed to engage secondary studentsin semester-long inquiry-based projects within the context of biomedical
2013 for designing the nation’s first BS degree in Engineering Education. He was named NETI Faculty Fellow for 2013-2014, and the Herbert F. Alter Chair of Engineering (Ohio Northern University) in 2010. His research interests include success in first-year engineering, engineering in K-12, introducing entrepreneur- ship into engineering, and international service and engineering. He has written texts in design, general engineering and digital electronics, including the text used by Project Lead the Way.Mrs. Tina Marie Griesinger, Virginia Polytechnic Institute and State University Tina Griesinger is a PhD student in the Engineering Education department at Virginia Polytechnic Institute and State University
Revelations: The challenges and promises of implementing informal STEM experiences in K-12 school settings (Work in Progress, Diversity)AbstractCatalyzing Inclusive STEM Experiences All Year Round (CISTEME365) is a multi-year,multi-pronged project funded by the National Science Foundation (NSF). We worked with K-12school educators to improve their understanding and promote practices that purposely influencestudents’ science, engineering, technology, and mathematics (STEM) interests and careertrajectory. We also supported creating and implementing out-of-school STEM clubs that offerstudents inquiry-driven engineering design and other hands-on STEM experiences throughoutthe school year. As part of our larger project goals
. Participants already registered for the in-person residentialprogram needed to quickly decide if they wanted to continue with the new virtual format. In threemonths, the project team went from skeptics to strong advocates of a virtual summer program.To increase diversity in participants underrepresented in Engineering, EPIC partners withprograms such as the Migrant Education Program (MEP) and Advanced Via IndividualDetermination (AVID) program. The MEP is a federal program providing academic support tochildren of migrant workers in agriculture, dairy, or fishing industries. The AVID programprovides extensive support to minority, rural, low-income, and other participants without acollege-going tradition in their families who have the desire to go to
Engineering Education Center, and Caruth Institute of Engineering Education. He specializes in Engineering, STEM, and Project Based Learning instruction. American c Society for Engineering Education, 2021 Computer Science and Computational Thinking Across the Early Elementary Curriculum (Work in Progress)In 2016 Amazon announced an extensive search to identify a home for its second headquarters,HQ2. Our city, Dallas, TX was near the top of the list for most of the competition. However,when the final choice was announced two years ago, Dallas lost to Washington, D.C. and NewYork City. According to the Dallas Mayor, who was an active member of the
activity. See full documentation for standards.In the ConnecTions in the Making project, researchers and school district partners work todevelop and study community-connected, integrated science and engineering curriculum unitsthat support diverse elementary students’ science and engineering ideas, practices, and attitudes.Students investigate, prototype, share, and revise functional solutions to an engineering designchallenge rooted in the students’ local community while scientifically exploring the phenomenaand mechanisms related to the challenge. This paper shares the “Accessible Playground Design”3rd-grade unit in which students explore the scientific concepts of force, motion and magnetismbased on the need to design a piece of accessible
for STEM and focusing ondeveloping personal connections, students are more likely to identify these providers as rolemodels [11-12].Our initial goal was to gain a better understanding of whether students view these outreacheducators as role models. In the first year of the project, we directly asked students to identifytheir role models and whether they thought of their EOEs as role models. Consistent withprevious research on children’s role models [13], students most often mentioned family membersas role models, followed by celebrities (e.g., athletes, singers), teachers and fellow classmates,with only a handful citing EOEs. Reasons provided by students for choosing these role modelswere split among what role models do as careers or hobbies
disciplines. His research interests in physics focuses on student-centered collaborative problem solving. Dr. Williams also serves as Co-Lead of the Northshore STEM Coalition, a member of the national STEM Learning Ecosystem network. As part of the Northshore STEM Coalition, Dr. Williams has helped to organize, develop, and deliver STEM programming to un- derserved communities. Troy holds a B.S. and M.S. in Physics and a Ph.D. in Science and Mathematics Education from Southern University and A&M College.Dr. Wendy J. Conarro, Southeastern Louisiana UniversityTireka Cobb Ph.D., Louisiana Office of Student Financial Assistance Dr. Tireka Cobb serves as the Director of LOSFA Field Outreach Services and Project Director for
received my first two degrees in Mechatronics Engineering in Jordan and Malaysia, respectively. In 2012 I graduated from UNLV with Ph.D. in Mechanical Engineering and immediately joined Southeastern as an Assistant Professor. I work in the area where Mechanical meets with Electronics to produce a nice mix called Mechatronics. I enjoy working with students while teaching in classroom, or in the lab doing research.Tireka Cobb, Louisiana Office of Student Financial Assistance Dr. Tireka Cobb serves as the Director of LOSFA Field Outreach Services and Project Director for Louisiana GEAR UP. She and her team work to remove barriers and to promote, provide, and prepare students for their future post-secondary journey. Dr
Paper ID #32392#LaHoraSTEAM (The STEAM Hour) – An Initiative to Promote STEM-STEAMLearning in Quarantine Times (Work in Progress)Mr. Marcelo Caplan, Columbia College Marcelo Caplan - Associate Professor, Department of Science and Mathematics, Columbia College Chicago. In addition to my teaching responsibilities, I am involved in the outreach programs and activities of the department. I am the coordinator of three outreach programs 1) the NSF-ISE project ”Scientists for To- morrow” which goal is to promote Science Technology Engineering and Mathematics (STEM) learning in community centers in the Chicago area, 2) the Junior
historically underrepresentedminorities. Such capacity building of school counselors will inherently improve the diversity ofour nation's engineering workforce.This study focused on high school guidance counselors as part of a larger ongoing project[PROJECT NAME]. The project is a new high school level engineering education initiative thataims to ‘demystify’ engineering for high school students, teachers, and counselors through anall-inclusive high school level engineering course. Three key components of the project include:1) design and development of a new engineering course open to all high school students, 2)teacher and counselor PD, and 3) a learning community of teachers, counselors, engineeringeducators, and practicing engineers. The
Mechatronics Engineering in Jordan and Malaysia, respectively. In 2012 I graduated from UNLV with Ph.D. in Mechanical Engineering and immediately joined South- eastern as an Assistant Professor. I work in the area where Mechanical meets with Electronics to produce a nice mix called Mechatronics. I enjoy working with students while teaching in classroom, or in the lab doing research.Tireka Cobb Ph.D., Louisiana Office of Student Financial Assistance Dr. Tireka Cobb serves as the Director of LOSFA Field Outreach Services and Project Director for Louisiana GEAR UP. She and her team work to remove barriers and to promote, provide, and prepare students for their future post-secondary journey. Dr. Cobb has a Bachelor of Arts
degree in Building Construction and Real Estate from Virginia Polytechnic Institute and State University in 2016. She has worked as a construction engineer for various general contracting companies in the Mid-Atlantic region.Dr. Dhaval Gajjar, Clemson University Dr. Dhaval Gajjar is an Assistant Professor at Clemson University’s Nieri Family Department of Con- struction Science and Management in the College of Architecture, Arts and Humanities. Dr. Gajjar has conducted research over the last 11 years on construction workforce and talent attraction strategies, project delivery, project close-out and post-occupancy evaluation. He has authored over thirty (30) publi- cations and proceedings disseminating the research
Engineering.Mr. Abdullah J. Nafakh, Purdue University Abdullah J. Nafakh is a graduate student pursuing a Ph.D in Civil Engineering with an emphasis in Trans- portation at Purdue University. Abdullah gained both his B.S.C.E. and M.S.C.E. at Purdue University. After gaining his M.S.C.E. degree, Abdullah worked for two years as a roadways engineer carrying out several roadway projects for public Indiana agencies before returning to Purdue as a PhD student. American c Society for Engineering Education, 2021 AN EVALUATION OF A UNIVERSITY-LEVEL, HIGH SCHOOL COURSE TAUGHT TO FOSTER INTEREST IN CIVIL ENGINEERING (EVALUATION)ABSTRACTHigh school
is currently engaged in multiple research projects that involve multidisciplinary collaborations in the field of engineering, medicine, and education, as well as research on teacher preparation and the conducting of evidence-based interventions in school environments.Dr. Stacy S. Klein-Gardner, Vanderbilt University Stacy Klein-Gardner’s career in P-12 STEM education focuses on increasing interest in and participation by females and URMs and teacher professional development. She is an Adjunct Professor of Biomedical Engineering at Vanderbilt University where she serves as the co-PI and co-Director of the NSF-funded Engineering For Us All (e4usa) project. Dr. Klein-Gardner formerly served as the chair of the ASEE
posterboard. You may wish to cut the board in half to Think critically about save time & resources. marketing of electronic 2. Use QR code provided to devices load PowerPoint with images Recognize trade-offs in that use standard Post-It engineering design colors (or create your own). Understand that resolution is 3. Hang posterboard more than just a number on wall and project Understand how digital cameras one of the
engineering.Program DesignThe uniqueness of this RET site program existed in the incorporation of teachers’ scientificdevelopment beyond the standard research experience by using methods based on the Train-the-Trainer model, allowing rotation through multiple research labs rather than restricting to oneexperience and developing end products of lesson plans for the classroom in addition to researchfindings.The objective of the NSF RET site program was to provide at least 30 K-12 teachers with hands-on engineering design experience covering all aspects of the Internet of Things (IoT). To meetthis objective, after a detailed orientation, teachers were scheduled to rotate through fourmodules conducted in research laboratories guided by the project faculty and
Engineering department.Murad Musa Mahmoud, Wartburg College Murad is an Assistant Professor at the Engineering Science Department at Wartburg College. He has a Ph.D. in Engineering Education from Utah State University. Research interests include recruitment into STEM, diversity in STEM as well pedagogy and instruction.Prof. Kurt Henry Becker, Utah State University Kurt Becker is a professor in the department of engineering education and his areas of research include en- gineering design thinking, adult learning cognition, engineering education professional development and technical training. He is currently working on National Science Foundation funded projects exploring en- gineering design systems thinking and several
Advisors Dr. Gretchen Fougere is an inventor, technology leader, and educator. Her broad, interdisciplinary train- ing prepared her well to have a successful career in industry-based technology development as well as education. Dr. Fougere has spent her career engaging people of all backgrounds to understand how engi- neering and design can enhance their lives. A significant fraction of her effort has focused on expanding STEM reach and impact through partners in industry, universities, and nonprofit entities. Her firm, STEM Leadership Advisors, is proud to have collaborated with WPI for this NSF-funded project and she also serves as Vice Chair of the Science Club for Girls. Dr. Fougere has had dual careers in
biomedical engineering from Saint Louis University. She is currently an NSF/ASEE I-PERF post-doctoral fellow in a biotech start-up and hopes to continue her career by combining her passion in biomedical engineering and healthcare as well as in education reform in engineering.Mrs. Traci Aucoin Traci Aucoin is currently the Lafayette Parish School System GEAR UP Project Director. She has worked in education for 30 years and has been a part of the GEAR UP initiative for seven years. She began her career as a high school biology and physics teacher before she moved into higher education where she served the University of Louisiana at Lafayette in numerous capacities for over 20 years. She served as Director of the Alumni
robotics applications. Savindi was also a participant in the Soft Robotics Toolkit pilot in October 2020.Prof. Conor Walsh P.E., Harvard University Conor is Assistant Professor of Mechanical and Biomedical Engineering at the Harvard School of Engi- neering and Applied Sciences and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard. He is the founder of the Harvard Biodesign Lab, which brings together re- searchers from the engineering, industrial design, medical and business communities to develop smart medical devices and translate them to industrial partners in collaboration with the Wyss Institute’s Ad- vanced Technology Team. Conor’s research projects focus on wearable
Associate Professor in the Department of Engineering Management and Systems Engi- neering at Old Dominion University, Norfolk, VA, USA. Her main areas of research interest are collabo- rative work-structures, virtual teams, and team decision-making and performance.Dr. Jennifer Jill Kidd, Old Dominion University Dr. Jennifer Kidd is a Master Lecturer in the Department of Teaching and Learning at Old Dominion Uni- versity. Her research interests include engineering education, computational thinking, student-authored digital content, and classroom assessment, especially peer review. She currently has support from the National Science Foundation for two projects related to engineering education for preservice teachers.Dr
, criteria, andconstraints. Each student produced an individual coded design evaluated individually for meeting the project and the group’s statedrequirements. Each group presented together and was evaluated for coherence among the designs and articulation of themes.AFFORDANCES • Students shared personal feelings in individual designs. • Students thought deeply about problem definition with other students. • Assessment boundaries between individual and group work were clear and easy to assess. • The method gave “hope for pandemic group work” to a participating educator. • “The coding assignment it was a fun way to cooperate it into our learning”LIMITATIONS • Thematic unification was weak (e.g., topic, colors, actions.) • Seven students chose