. Usprech has worked to incorporate hands on cellular/tissue engineering design into the SBME undergraduate curriculum and teaches courses in professionalism and ethics, and engineering and design.Prof. Karen C. Cheung, University of British Columbia Karen Cheung received her B.S. and PhD. degrees in Bioengineering from the University of California, ´ Berkeley. She did her postdoctoral work in microtechnologies at the Ecole Polytechnique F´ed´erale de Lausanne, Switzerland. She is a Professor in the Department of Electrical & Computer Engineering and the School of Biomedical Engineering at the University of British Columbia.Dr. Agnes Germaine
, collaboratingwith industry partners and government agencies to stay at the forefront of technological advancementsand threats. The center also provides mentorship, internships and scholarships to undergraduate andgraduate students, in addition to opportunities and assistance with achieving post-graduate degrees inembedded systems or cybersecurity (CAP Center, n.d). CEAMLS engages in research, education, andoutreach efforts to address ethical considerations and mitigate biases in these technologies, contributing toa more equitable and just use of AI and machine learning systems (CEAMLS, n.d). Both centers aredeeply involved in cultivating the next generation of engineers through K - 12 school partnerships,seminars, workshops and summer camps. The CAP
. Bennett, “Using narratives to evoke empathy and support girls’ engagement in engineering, Connected Science Learning, vol. 3, 2020.[34] P. S. Lottero-Perdue and J. Settlage, “Eqitizing engineering education by valuing children’s assets: Including empathy and an ethic of care when considering trad-offs after design failures,” Journal of Pre-College Engineering Education Research, vol. 11, Article 4, 2021.[35] E. Shokeen, “Understanding learning and sketching experiences of children involved in STEM design,” Ph.D dissertation, College of Information Studies, University of Maryland – College Park, 2023.[36] C. L. Smith, “Bootstrapping processes in the development of students’ commonsense matter theories: using analogical
with her students, inviting community members whowere impacted (many of her students’ relatives) to come present to the class. As a result, the fourth-grade students engaged in the engineering design process to construct and test dam designs withthe community context in mind, grappled with the ethics of engineering, and offered alternativesolutions. This example demonstrates the power of connecting an engineering task to place, localhistory, and community and cultural contexts to increase relevance and importance for students.Other CRED tasks developed by teachers included areas of interest such as: designing a filtrationsystem to improve indoor air quality, developing a severe weather app to be used by teen drivers,creating a model of a