(contentexperts) conceptualize science teaching and learning from an engineering perspective. To whatextent were engineering graduate students able to carry out inquiry-based practices and formulateengineering design tasks appropriate in context and level for middle and high school students?Research DesignConceptual FrameworkThe theoretical lens adapted for this study is a community of practice (CoP). Lave and Wenger19describe “[a] community of practice [as] a set of relations among persons, activities, and world,over time and in relation with other tangential and overlapping communities of practice” (p. 98).A community of practice is a set of practitioners characterized by common goals, actions, andresources that facilitate the shared practice.2 Figure
. The Integrative GraduateEducation Research and Traineeship on Magnetic and Nanostructured Materials (IGERT-MNM)is a collaboration between Purdue University, Cornell University, and Norfolk State Universityto train interdisciplinary science and engineering doctoral students for future roles as leaders inthe materials science and engineering fields. As part of this socialization into future careers,students proceed through a variety of modules. This paper specifically covers student learning ina pedagogy module, which introduces students to best practices in teaching and learning.Graduate student reflections on the development of high-school level student and teacher scienceand engineering activities were analyzed via thematic coding methods in
engineering. Her research interests address a broad spectrum of educational topics, but her specialty is in how people learn problem solving skills.Hannah Christine Zierden, The Ohio State UniversityMr. Kevin Robert Wegman Kevin is a first year graduate student studying Nuclear Engineering. He graduated last fall with a B.S. in Chemical Engineering. Kevin has taught with the EEIC for the past three years, twice as a UTA and once as a GTA.Dr. Rachel Louis Kajfez, Ohio State University Dr. Rachel Louis Kajfez is an Assistant Professor of Practice in the Engineering Education Innovation Center and the Department of Civil, Environmental, and Geodetic Engineering at The Ohio State Univer- sity. She earned her B.S. and M.S
quantifytheir undergraduate experience. Students are able to track their progress, design their ownacademic path to graduation, and develop their own enrichment activity plan that best fits theirspecific interest. The engineering portfolio also assists students to prepare their resume for jobinterviews and, when used as a tool for interviewing, the portfolio highlights tangibleexperiences outside what is normally found in transcripts and conventional resumes.Our approach focuses on capturing the entire breath of each student’s educational experience,while setting the foundation for students to build an open-ended self-guided career plan thatdraws from their skills, experiences, and achievements that comprise their engineering portfolio
reform effort risks being undermined by the curricular and cultural practices thatpervasively shape student experience and outcomes and drive away too many could-be engineerswith diverse interests, aptitudes, lived experiences, and values.PDI’s response to the bait-and-switch problem employs design-oriented logics of engagement inparallel with the fundamentals-first approach, which provides a partial corrective to the logic ofexclusion. This configuration offers educators new avenues for thinking about explicit andimplicit connections between the design-centric emphasis in K-12 and the content-driven modelof fundamentals first. Moving forward, we hope to conduct empirical research using participantobservation and interviews to compare students
(1), 21-51.3. Fairweather, J. (2008). Linking evidence and promising practices in science, technology, engineering, and mathematics (STEM) undergraduate education. A Status Report for The National Academies National Research Council Board of Science Education.4. Linenberger, K., Slade, M.C., Addis, E.A., Elliott, E.R., Mynhardt, G., & Raker, J.R. (2014). Training the foot soldiers of inquiry: Development and evaluation of a graduate teaching assistant learning community. Journal of College Science Teaching, 44(1), 97-107.5. Bohrer, K., Ferrier, A., Johnson, D., & Miller, K. (2007). TA training workshops. In K.L. Chase (Ed.), Association for Biology Laboratory Education (ABLE) Proceedings, 29, 67
processing research include the design and modeling of intelligent controls, Kalman filters, and automation. Engi- neering education research includes curriculum and laboratory development for these concepts.Mrs. Anastasia Marie Rynearson, Purdue University, West Lafayette Anastasia Rynearson is a Purdue Doctoral Fellow pursuing a degree in Engineering Education at Purdue University. She received a B.S. and M.Eng. in Mechanical Engineering at the Rochester Institute of Technology. Her teaching experience includes outreach activities at various age levels as well as a position as Assistant Professor in the Mechanical Engineering Department at Kanazawa Technical College. Her current research interests focus on early P-12
what thiscareer path would look like in practice, but I’m committed to finding out.About half way through my freshman environmental seminar, my professor, Dr. Walther, askedme if I would be interested in working on a research project in engineering education. Hedescribed a study of media representations of engineering that he was working on with hiscolleague and told me that they were looking for a student who would like to help with dataanalysis. I agreed, and attended his research group’s next meeting. I was initially intimidated byworking with professors on a research project, but I quickly became comfortable after help andencouragement from my supervisors.My participation in this research group formed the context for the present
in Engineering Education (FREE, formerly RIFE, group), whose diverse projects and group members are described at feministengineering.org. She received a CAREER award in 2010 and a PECASE award in 2012 for her project researching the stories of undergraduate engineering women and men of color and white women. She received ASEE-ERM’s best paper award for her CAREER research, and the Denice Denton Emerging Leader award from the Anita Borg Institute, both in 2013. She helped found, fund, and grow the PEER Collaborative, a peer mentoring group of early career and re- cently tenured faculty and research staff primarily evaluated based on their engineering education research productivity. She can be contacted by email at
Department Head for Graduate Programs in Vir- ginia Tech’s Department of Engineering Education. She has her doctorate in Engineering Education and her strengths include qualitative and mixed methods research study design and implementation. She is/was PI/Co-PI on 8 funded research projects including a CAREER grant. She has won several Virginia Tech awards including a Dean’s Award for Outstanding New Faculty. Her research expertise includes using motivation and related frameworks to study student engagement in learning, recruitment and retention in engineering programs and careers, faculty teaching practices and intersections of motivation and learning strategies. Matusovich has authored a book chapter, 10 journal
Luchini-Colbry is the Director for Graduate Initiatives at the College of Engineering at Michigan State University, where she completed degrees in political theory and computer science. A recipient of a NSF Graduate Research Fellowship, she earned Ph.D. and M.S.E. in computer science and engineering from the University of Michigan. She has published more than two dozen peer-reviewed works related to her interests in educational technology and enhancing undergraduate education through hands-on learn- ing. As a volunteer for Tau Beta Pi, the Engineering Honor Society, Luchini-Colbry facilitates interactive seminars on interpersonal communications and problem solving skills for engineering students across the U.S.Dr
waterresources engineering curriculum. Both laboratory and lecture courses were assessed withstudents of varying grade levels. Better understanding of student and teaching assistantexpectations can provide valuable insight towards the design of graduate teaching assistanttraining and support programs to help foster a more beneficial and positive experience for boththe teaching assistants and their students.IntroductionIn addition to their coursework and research responsibilities many graduate students are giventhe role of teaching assistant (TA). Although the exact responsibilities of the TA role can varywidely across departments and courses, instruction of students via large lectures, small groups, orlaboratory settings is an included facet of the role
Laboratories at a Doctoral/Research University. Journal of Research in Science Teaching, Vol. 41, No. 3.7. Roehrig, G.H. & Luft, J.A. (2003). Graduate Teaching Assistants and Inquiry-Based Instruction: Implications for Graduate Teaching Assistant Training. Journal of Chemical Education, Vol. 80, No.10.8. Shannon, D.M., Twale, D.J., & Moore, M.S. (1998). TA Teaching Effectiveness: The Impact of Training and Teaching Experience. The Journal of Higher Education, Vol. 69, No. 4.9. Verleger, M.A., & Diefes-Dux, H.A. (2013). A Teaching Assistant Training Protocol for Improving Feedback on Open-Ended Engineering Problems in Large Classes. ASEE Annual Conference & Exposition: Atlanta, GA.10. Krueger, R. A., & Casey, M. A. (2009
facilitators chosen had both graduated from their undergraduate degrees the month before facilitating their programs. The first researcher had experience with her program because she had previously been a student in the program. The second researcher worked in the office that hosted several summer programs over the year, but in this paper, she focuses on her experiences with the coeducational program for high school students. Consistent with our research design, the authors and facilitators collaboratively developed a series of six shortanswer prompts (AF) to answer our two research questions. The first prompt related to understanding the overarching goals for each program (A). Three prompts focused on facilitation and logistic issues related to