place inthe Center for Technology in the Summer I term of 2008, which lasted from April 30 to June 18.Participants in the SBP included 35 students, 5 faculty, and 2 tutors (Figure 2). Every studenttook two developmental courses: one math course (either MTH092 Elementary Algebra orMTH100 Introductory College Mathematics depending on his/her placement or prerequisite) andone technology course (either CSC100 Fundamentals of Computer Science or ENR100Introduction to Engineering Technologies and Science depending on his/her discipline).Engineering related majors were placed into ENR100, and other STEM majors were assigned toCSC100. In both CSC100 and ENR100 classes, students learned about career opportunities, hadhands-on laboratory projects, and
AC 2011-788: SATISFACTION OF FEMALE FACULTY AT TWO-YEARSCHOOLSDavid A. Koonce, Ohio UniversityCynthia D. Anderson, Ohio University Cynthia Anderson is an Associate Professor of Sociology and Director of Graduate Studies at Ohio Uni- versity. In addition to research on community college faculty, Dr. Anderson has published research on inequality, labor markets, rural communities, and gender.Valerie Martin Conley, Ohio University Valerie Martin Conley is director of the Center for Higher Education, associate professor, and coordinator of the Higher Education and Student Affairs program at Ohio University. She is the PI for the NSF funded research project: Academic Career Success in Science and Engineering-Related
for the Texas Alliance for Minority Participation program from 1993 to 2002, and is currently the Department Chairperson for Physics, Engineering, & Architecture. He has been involved in numerous initiatives to integrate the findings of physics and engineering education research with education practice. Page 11.1276.1© American Society for Engineering Education, 2006 THE EDGE SUMMER PROGRAM IN ITS THIRD YEARThis paper presents the results of the third cycle of the EDGE (Early Development of GeneralEngineering) Summer Bridge Program that was initiated in 20031. This project was partiallyfunded by
workforce agesthere will be a need to replace these highly skilled & highly paid workers as well as forcontinuous upgrading in worker capabilities. The National Association of Manufacturers notes, in their recent report “KeepingAmerica Competitive: How a Talent Shortage Threatens American Manufacturing” thatthere will be a projected need for 10 million new skilled workers by 2020. They believethat “A long-term manufacturing employment and skill crisis is developing, one withominous implications for the economy and national security.” Given the significant joblosses in manufacturing, it is becoming increasingly difficult to attract a new generationof young people into advanced technological education programs, which would preparethem for
. Another goal of the NSF Student Enrollment andEngagement through Connections (SEEC) grant is to increase the diversity ofengineering graduates at ISU. The specific goals of SEEC are to increase thenumber of engineering graduates by 100 per year to obtain a total of about 900per year with approximately 10% from minorities and 20% females12. The key tomeeting these goals is the creation of meaningful connections between ISU andthe state community colleges to support transfer students. This project has focusedon five such connections: 1) a new admission partnership program, 2) coordinatedadvising and activities planning, 3) expansion of learning communities at ISU andstate community colleges, 4) creation of an engineering orientation class at
several others have recently started their own internal curriculum processesto get the degree program approved for offering in 2011.This community college Engineering Technology degree is part of a much larger statewideunified curriculum project that reaches the high school technology programs and careeracademies, incumbent worker training and bachelor degree programs. Embedding the MSSCSkill standards into the ET Core provides an industry-relevant articulation pathway fromsecondary programs that address these same industry skills. It also provides a pathway forincumbent workers to gain college credit by experience through certification. To accomplishthese articulations, FLATE has crafted the first-of-its-kind Statewide Articulation
smaller class size that provides additional educational support. Most of these studentsstart their education program by enrolling in an Associate of Arts (AA) degree. These programs,however, often are not specifically designed to transfer into an engineering Bachelor of Sciencedegree program.According to the Florida Department of Economic Opportunity, out of a total of 126 occupationslisted for 2024 growth projection, 16% of the top 25 are engineering [1]. Of the total occupationsrequiring a bachelor's degree, 13% are in engineering [1]. Those employed with a bachelor'sdegree in engineering comprise 23% of the top one-half of the median average and 13% of thetop quarter median wage earners [1]. Thus, engineering is one of the highest paying and
mechatronics, anassociate’s degree in mechatronics and robotic systems, and a bachelor’s degree in electricalengineering technology.This pathway could not come at a better time, as the International Federation of Robotics (IFR)projects 1.9 to 3.5 million jobs related to robotics will be created in the next eight years. In orderto help meet this employer demand, Bay College and Michigan Tech have developed state-of-the-art training labs featuring FANUC robots and articulation agreements between theinstitutions that will allow students to begin pursuing a high-tech education and career as early ashigh school. Furthermore, stand-alone programs are being developed to train and certify studentsfrom other institutions, industry representatives, and other
focuses on the fifthiteration of the program. This project has been supported by grants from the Department ofEducation (MSEIP P120A050080) and Alamo Community College District Foundation.Brief History of the ProgramThe original version of this summer bridging program was intended to serve well-prepared highschool students in the 10th and 11th grades who would have participated in the San Antonio Pre-freshman Engineering Program (PREP) 2. EDGE was designed to introduce them to collegelevel course work as a learning community and provide activities to help them developindependent learning and teamwork skills with the goal of increasing their likelihood of earninga college degree in engineering, science, math, or other related field. The learning
transfer students to make recommendations on what theirsending and receiving institutions could have done to enhance their success or ease theirtransitions, we learned more about opportunities to improve transfer receptivity. Findings fromthis investigation further expand the small body of literature on engineering transfer students andtheir experiences with post-transfer transition processes.1,2,19,22,23,24,25III. Methods This study draws on data that were collected for a largescale study sponsored by theNational Science Foundation (Grant No. 1428502). That project focuses on the transfer processin engineering and seeks to enhance the opportunities for this pathway to serve as an efficient,effective, and inclusive mechanism for students to
production and retention of Science, Technology, Engineering and Mathematics (STEM) talent is currently a major threat to the country2. In fact, to address heightened concern regarding the United States’ global position, several national efforts have been implemented to increase the number and diversity of students pursuing degrees and entering STEM careers. In 2012, the President’s Council of Advisors on Science and Technology announced that by 2022, the country would need 1 million more STEM professionals than projected to be produced18. One critical asset to reaching this capacity lies in the cultivation of competent, adaptable engineers prepared
-based), conducting in-depth interviews, and moderating focus groups. In 2004, Dr. Mobley joined the NSF-funded MIDFIELD interdisciplinary research team which is examining the educational pathways of engineering students at eleven universities. She is currently serving as Co-PI and is co-leading the qualitative component of a project on transfer students in engineering.Dr. Catherine E. Brawner, Research Triangle Educational Consultants Catherine E. Brawner is President of Research Triangle Educational Consultants. She received her Ph.D. in Educational Research and Policy Analysis from NC State University in 1996. She also has an MBA from Indiana University (Bloomington) and a bachelor’s degree from Duke University
curriculum projects, especially in the areas of technical education. Dr. Alfano has a B.S. in Chemistry, M.S. in Education/Counseling, and a Ph.D. from UCLA in Higher Education, Work, and Adult Development. She also directs the Cisco Academy Training Center (CATC) for California and Nevada.Joseph Gerda, College of the Canyons Joseph Gerda has been at College of the Canyons since 1987, where he is currently a professor in the mathematics department. Since 1988 he has held a variety of positions including Department Chair, Division Chair, Coordinator for Instruction, Assistant Dean of Instruction & Athletic Director. He has been involved in the Hesburg Award winning staff development activity
Paper ID #17743Exploring nontraditional characteristics of students in a freshman engineer-ing courseMr. William B. Corley, University of Louisville William B. Corley, M.S., is the graduate research assistant on this project. He is an experimental psychol- ogy graduate student with the Department of Psychological and Brain Sciences at University of Louisville. He has a bachelor’s degree in psychology and a master’s degree in experimental psychology with a cogni- tive psychology concentration. His background includes several educational research projects and training in statistical methods.Dr. J C McNeil, University of
to the development of academic programs, several other educational options werealso created as part of this partnership. The first of these is to provide stand-alone, non-creditworkshops to train and certify students from other institutions, industry representatives, anddisplaced workers. Workshops have also been created to train educators at both the K-12 andpostsecondary levels on the use of robotic arms and the role the field of robotics plays in science,technology, engineering, and math (STEM) education. This activity is aimed at broadening thescope of the project beyond just Bay College and Michigan Tech University through improvingthe quality of industrial robotics education at other area institutions. Thanks to the attainment
identity among adult engineering students. Currently, adult students make up 37.6% of the student population at 4 year institutions in the 4United States and 40.3% of the population at 2 year institutions in the United States. Adult student enrollment rates are increasing on par with the rates of their younger, traditional counterparts, and the rate of increase of adult enrollment in college is expected to outpace the rate of increase in traditional age student enrollment. NCES projects that from 2012 to 2023 the rate of increase for students under the age of 25 will be 12%, whereas the rate of increase for
serving as a Director on the Antelope Valley Board of Trade and is the Honorary Commander of the 412th Electronic Warfare Group at Edwards AFB. He is also a member of several professional societies and has authored and co-authored several papers pertaining to the Antelope Valley Engineering Program.J. S. Shelley, US Air Force J. S. Shelley, PhD, PE After 20 years as a researcher and project manager with the Air Force Research Laboratories, Dr Shelley has transitioned to teaching mechanical engineering, mostly mechanics, for the past 6 years.Dhushy Sathianathan, California State University, Long Beach Dr. Sathianathan is the Associate Dean for Academic Programs in the College of Engineering at Califor- nia
State and Federal curriculum projects, especially in the areas of technical education. Dr. Alfano has a B.S. in Chemistry, M.S. in Education/Counseling, and a Ph.D. from UCLA in Higher Education, Work, and Adult Development. She also directs the Cisco Academy Training Center (CATC) for California and Nevada.Sharlene Katz, California State University-Northridge Sharlene Katz is a co-Principal Investigator of CREATE and Professor in the Department of Electrical and Computer Engineering at California State University, Northridge (CSUN) where she has been for over 25 years. She graduated from the University of California, Los Angeles with B.S. (1975), M.S. (1976), and Ph.D. (1986
the LBJ Institute for STEM Education and Research.Prof. Bahram Asiabanpour, Texas State University, San Marcos Dr. Bahram Asiabanpour is an Associate Professor of Manufacturing Engineering at Texas State Univer- sity and a Certified Manufacturing Engineer (CMfgE). He received his Ph.D. from the Daniel J. Epstein Department of Industrial and Systems Engineering at the University of Southern California. His main research interest is Additive Manufacturing, Product Development, and Renewable Energy. Since joining Texas State, Dr. Asiabanpour has secured 27 externally funded projects from NSF, NASA, Toyota, USDA, DOE, and several local industries. He is currently the PI for the $614K grant from the DOE (2014-17
instrumental in merging Tau Alpha Pi National Honor Society into the ASEE.In addition, Dr. Pariser Co-Founded 5 venture companies, and as a management consultantsuccessfully catalyzed over $100 million of new shareholder value in client businesses. Bert ledcross-functional client teams in projects to find and capture value-creating profit and growthopportunities. Bert received a PhD, MS from Columbia University and a BS from MIT inElectrical Engineering. bert.pariser@tcicollege.edu Page 15.852.10
M.S. in Civil and Environmental Engineering at Stanford University. Prior to his doctorate, Gordon’s professional experience included construction management on projects ranging from $25 million to $2.5 billion and project management and product development for an early-stage start-up software company.Dr. Hasan Sevim, Southern Illinois University, Edwardsville Dr. Hasan Sevim obtained his B.S. degree in mining engineering in 1974 from Istanbul Technical Uni- versity, Turkey, as the valedictorian of his class. He obtained his M.S. and Ph.D. degrees in 1978 and 1984, respectively, from Columbia University, New York. In 1984, he joined the College of Engineering at Southern Illinois University, Carbondale as an
andunderrepresented minority students, a lack of self-confidence to do engineering or computerscience3 plus the lack of foreseeable finances to attend a university, may well be enough for themto not consider going on for a Bachelor’s degree in these fields.The authors first worked with local CCs. With the assistance of liaisons at each CC, it wasrelatively easy to hold “Be an Engineer” workshops for an hour and get an audience of 75 to over100 students. The event would include engineering projects, a panel of professional engineers,and a panel of engineering students, plus information given by engineering faculty. CCinstructors assisted by dismissing a math or science class to allow the students to attend. Anincentive is very helpful to get the students to
high school. In the caseof the former population, our robotics camp research shows that boys need “confirmation” tocontinue strongly in engineering, whereas girls need “confirmation” after “affirmation” and“visualization.” Based on the above finding, we believe that the approaches to encourage middleschool boys to proceed towards STEM careers and the approaches to encourage middle schoolgirls to proceed towards STEM careers must have some similar elements and yet be necessarilydifferent.A study that shows the difference between boys and girls was done very early in ourcollaborative project. Collin College asked questions of Allen ISD students that were judged tobe “good” in 7th and 8th grade math by test scores and teachers. The simple study
ColumnsAlso, students should be able to generalize • Relations between loads applied to a non-rigid body and the deformations which are depen- dent on the material • Relations between loads applied to a non-rigid body and the stresses produced on the body • Relations between stress and strain from various materials and conditions • How to design materials to account for different loads and conditionsStudents are evaluated with 4 standard exams, 1 final, weekly quizzes, random class activities, asemester project, and homework assignment for each of the 9 chapters covered. Unlike the 2 traditional sections of this class, students in the hybrid class are required to view apre-lecture video before coming to class which discusses
project. Importantly, thisscholarship program aims to increase the number of engineers in the state and nation, reachingout to those students who have an interest in the field but who are unable to pursue the educationnecessary to acquire a degree.IntroductionIn order to understand the unique needs of the transfer student, an intensive questionnaire wasdeveloped to assess the Pathway to Success program effectiveness. The questionnaire has severalcomponents, including: demographic information, beliefs about self-efficacy in engineering,anticipated and experienced hurdles throughout the program, and scholarship programassessment. Many of the questions posed aimed to better understand the distinctive challengesfaced by transfer students so that the
professional, societal, and global issues15. Awareness Ability to understand own strengths and weaknesses, and receive feedback16. Leadership Ability or potential to lead others and/or projects, set and achieve goals, create change and inspire confidence17. Overall Overall performanceTable 4 lists the average scores for each of the seventeen evaluation items. Table 4: Average Scores from Employer Evaluation Reports Coop #1 Coop #2 Coop #3 Coop #4 # Item Label All ET2 All ET2 All ET2 All ET2 1. Quality 4.2 4.3 4.3 4.4 4.3 4.2 4.4 4.5 2. Quantity
authors detailedconclusions reached by fifty participants from two-year and four-year institutions in a NationalScience Foundation sponsored workshop held in 2004. One conclusion was that articulationagreements must be supported by partnerships between two-year and four-year colleges toachieve seamless transfers of students from the two-year schools. In addition, student outcomesand competencies should be used for articulation instead of courses. The workshop participantsalso suggested further evaluation of the transfer process using such criteria as assessment oflearning outcomes and competencies. In Educating the Engineer of 2020 2, one of the 14recommendations of a project sponsored by the National Academy of Engineering is that four-year
Foundation and his team received Best Paper awards from the Journal of Engineering Education in 2008 and 2011 and from the IEEE Transactions on Education in 2011. Dr. Ohland is past Chair of ASEE’s Educational Research and Methods division and a member the Board of Governors of the IEEE Education Society. He was the 2002–2006 President of Tau Beta Pi.Mr. Russell Andrew Long, Purdue University, West Lafayette Russell Long is Director of Project Assessment at the Purdue University School of Engineering Education. He has extensive experience in assessment and student services in higher education and has worked for eight years as the Data Steward of the MIDFIELD project
2. Electro Optical Devices 3. Fiber Optics 4. Lasers Systems Robotics Specialty 5. Advanced Programmable Logic Controllers 6. Intro to Robotic Systems 7. Manufacturing Processes 8. Capstone Project Telecommunications Specialty 9. Computer Repair 10. Wireless Networks 11. Wireless Security 12. Telecommunication Systems TOTAL 60 Page 24.1151.6Replicating the Photonics Systems Technician Curriculum ModelIn 2014, 28 colleges across the U.S. have adopted the Photonics Systems Technician
Texas Higher Education Coordinating Board since 1987 and now serves as Assistant Deputy Commissioner for Academic Planning and Policy. She is responsible for the administration and management of matters related to the Board’s higher education academic planning and policy functions, and she provides leadership on key projects, reports, and studies that cut across divisions of the agency. She has taught at The University of Texas at Austin, and she currently is an Adjunct Assistant Professor of Communication at St. Edward’s University in Austin. Smith serves as the project coordinator for the $1.8 million productivity grant awarded to Texas from Lumina Foundation for Education to plan methods of making the opportunity