thematerial and receive helpful feedback outside of class and by cultivating a more inclusive learningenvironment. The goal of this project is to use SedimentSketch application to help close the gapbetween Hispanic and non-Hispanic students’ GPAs, situational interest in geoscience courses,and STEM career trajectories.Background and motivationThe Hispanic population in the USA has grown significantly over the last 30 years, becoming animportant ethnic group in our society. However, this minority group has been marginalized forsocial and economic reasons. In 2022, Texas A&M University (TAMU) was awarded the status ofan HSI (Hispanic serving Institution) serving 25% of the undergraduate student population(Hispanic). The enrollment in undergraduate
Urban Settings: Experiences and Potential ImpactsAbstractComprehensive experiences with science, technology, engineering, and mathematics (STEM) inpre-school settings can assist young students in learning about computer science and engineeringprior to when they enter into K-12 classrooms. Such experiences are also an important way toattract more students to STEM careers. Currently however, the number of high-quality STEMeducation resources and materials available to preschool educators is limited. This is particularlythe situation in areas of high poverty in communities that have been under-resourcedlongitudinally. This research addresses a gap in preschool teachers’ capacity to support youngchildren’s STEM content knowledge
Engineering Education, 2023 1 Connecting Classroom Curriculum to Local Contexts to Enhance Engineering Awareness in Elementary YouthProject OverviewThis paper reports on the year three findings of a National Science Foundation Research in theFormation of Engineers project focused on increasing rural and indigenous youth’s awareness ofengineering and engineering related careers. To reach this goal, we worked with elementaryteachers to connect the engineering activities taught in the classroom with local funds ofknowledge and local engineering opportunities (Hammack et al., 2022; Hammack et al., 2021).Each of the four participating
Paper ID #32843S-STEM: Creating Retention and Engagement for Academically TalentedEngineersDr. Indira Chatterjee, University of Nevada, Reno Indira Chatterjee received her M.S. in Physics from Case Western Reserve University, Cleveland, Ohio in 1977 and Ph.D. in Electrical Engineering from the University of Utah, Salt Lake City, Utah in 1981. Indira is Associate Dean of Engineering and Professor of Electrical and Biomedical Engineering at the University of Nevada, Reno. As Associate Dean she oversees undergraduate and graduate education in the college including recruitment, retention, advising, and career placement. She
Logic Array (FPGA) architecture and design methodology, Engineer- ing Technology Education, and hardware description language modeling. Dr. Alaraje is a 2013-2014 Fulbright scholarship recipient at Qatar University, where he taught courses on Embedded Systems. Ad- ditionally, Dr. Alaraje is a recipient of an NSF award for a digital logic design curriculum revision in collaboration with the College of Lake County in Illinois, and a NSF award in collaboration with the University of New Mexico, Drake State Technical College, and Chandler-Gilbert Community College. The award focused on expanding outreach activities to increase the awareness of potential college stu- dents about career opportunities in electronics
’ interactions with faculty can provide high levelsof satisfaction in intellectual ability, problem solving, career development, and scientificreasoning [28,29]. However, problem solving and intellectual growth are especially increased forstudents of color [28]. More frequent contact with faculty has also been linked to self-efficacyamong engineering students [23,25].URM engineering students’ interactions with faculty members are important for developingintellectual thinking and growth because more exposure to knowledge and resources buildstudents’ abilities to perform tasks in while and out of the classroom. Personal and intellectualgrowth for black and Latino students in engineering increases when interacting with facultybecause students are able to
their (a) identity as engineers, (b) valuing of engineering as a profession, and (c)feelings of self-efficacy. Argued here is the notion that students who are able identify importantneeds, and are imbued with the knowledge and design skills to develop a solution to the need,will feel more capable as engineers (self-efficacy), begin to see themselves as engineers(engineering identity), and increasingly value engineering as an important set of skills, body ofknowledge, and career choice. This idea is all important in view of other research suggestingthat some engineering education venues are advancing an ecology of social detachment, withever decreasing regard for social concerns [3]. In experimental terms, the curricular changes (i.e
in the workplace [13]–[17]. Studies have found that in their careers, Blacks need to reconcile existing within twocultures, their personal Black culture and the dominant White workplace culture [13], [14], [17].As stated by Feagin and Sikes, “White workplaces rarely accommodate basic black interests andvalues. Instead, black employees are expected to assimilate” [13, p. 163]. Bell suggested that away to handle the dichotomy is to compartmentalize the two cultures [17]. The arduous task ofnavigating between the two cultures can result in loss of identity and psychological stress [14],[17].Intersectionality of race and gender have significant impacts for Black females in the workplace.This double jeopardy, or double-bind, has been studied by
based on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
, liberatory maker spaces, and a RED grant to increase pathways in ECE for the professional formation of engineers.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is a Professor of Engineering Education at Virginia Tech, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and
University After earning my B.S. in Engineering Science at Penn State University (2007), I began working as an audio-video engineer/designer. I then made a career transition to teach high school physics. Having sparked my love for education, I went back to school to earn my M.S. in Industrial & Systems Engineering (2015) and my Ph.D. in Engineering Education (2016). My first faculty job was at Rowan University in southern New Jersey, where I had the honor of helping develop their first-year engineering and B.S. in Engineering Entrepreneurship programs. I’m now blessed to be at CCU contributing to what God’s doing through our Industrial & Systems Engineering program and university.Dr. Ella Lee Ingram, Rose-Hulman
Outcomes for Undergraduate Students in the College of Engineering and Applied Sciences at Western Michigan UniversityAbstractStarting with the award of its first scholarships for the Fall 2010 semester, the goal of the S-STEM Scholars program at Western Michigan University has been to increase opportunities andimprove outcomes for financially needy but academically talented students and to involveundergraduate students enrolled in engineering, technology, or applied sciences majors. Theprogram has worked with first-time, first-year students and supports them as they progress intheir academic careers. Each scholarship awarded is roughly equal to one semester of tuition peracademic year for a full-time undergraduate student, and can be
-only 1 4 1 6 (18.2%) 4 Year / PhD 6 5 10 21 (63.6%)Our REU site did not have a focus on upper-division undergraduate students (i.e., juniors,seniors) and invited applications from students in all years of study. The intent was to provideresearch opportunities to students early in their education careers. This approach was successfulwith 54% of participants from lower-divisions (freshman, sophomore) and 46% from upper-divisions (junior, senior). The detailed distribution of participants by year of study across ourprogram’s 3 years are given in Table 3. A challenge of this recruitment strategy was that cohortshad students with a
Pennsylvania StateUniversity. As part of the program, scholars participate in a four-year comprehensive multi-tiered mentoring program and cohort experience. The LION STEM curricular program includesEngineering Ahead (a 4-week summer residential math-intensive bridge program prior toentering college), a first semester First-Year Seminar, and a second semester STEM-PersistenceSeminar. Co-curricular activities focus on professional communication skills, financial literacy,career readiness, undergraduate research, and community engagement. The program seeks toaccomplish four goals: (1) adapt, implement, and analyze evidence-based curricular and co-curricular activities to support, retain, and graduate a diverse set of the project's engineeringscholars
Bioengineering (1978) from the University of Vermont, and M.S. (1986) and Ph.D. (2002) in Bioengineering from Clemson University.Ms. Randi Sims, Clemson University Randi is a current Ph.D. student in the department of Engineering and Science Education at Clemson Uni- versity. Her research interests center around undergraduate research experiences using both qualitative and quantitative methodologies. Her career goals are to work as an evaluator or consultant on education- ally based research projects with an emphasis on statistical analyses and big data.Kelsey Watts, Clemson University Kelsey Watts is a recent graduate of Clemson University. She is part of the Engineering Education Re- search Peer Review Training (EER PERT
change.Teachers play a significant role in helping students develop an awareness of, and interest indifferent career opportunities [1]. They also help shape a students’ self-efficacy and expectationswhich can have a significant impact on the student’s choice of careers [2]. Unfortunately, manyteachers either have little knowledge of the field of engineering or have misconceptions about thefield such as failing to identify engineering as a career that helps humanity [3-4]. EngineeringCommunity Engaged Learning (CEL) is an excellent way to help teachers understand howengineering, as well as other STEM careers, can have a high level of community engagementwhile using creativity to help humanity.For the 2022-2023 Global STEM cohort, RET participants engaged
of Mechanical Engineering and Curriculum & Instruction at the University of Texas at Austin. She previously served as a Program Director at the National Science Foundation, on the board of the American Society for Engineering Education, and as an associate dean and director of interdisciplinary graduate programs. Her research awards include U.S. Presidential Early Career Award for Scientists and Engineers (PECASE), a National Science Foundation CAREER award, and two outstanding publication awards from the American Educational Research Association for her journal articles. Dr. Borrego is Deputy Editor for Journal of Engineering Education. All of Dr. Borrego’s degrees are in Materials Science and Engineering
(68%) have a college degree ormore, compared to just under one-third (31%) in non-STEM fields. Nearly one quarter (23%)have completed an associate’s degree or similar. Only 9% STEM works have a high schooldiploma or less (Commerce Blog, 2012). For a prospective student intends for STEM as the career plan, the analysis of the linkagebetween STEM jobs and STEM education indicated two patterns. Firstly, a STEM degree is thetypical path to a STEM job, as more than two-thirds of STEM workers with a college degreehave an undergraduate STEM degree. Secondly, STEM degree holders receive an earningspremium relative to other college graduates, whether or not they end up in a STEM job. Likewise,college graduates including non-STEM educated enjoy an
Paper ID #20439Positioning Students to Understand Urban Sustainability Strategies throughVertical Integration: Years One through FourMr. MOHAMED ELZOMOR, Arizona State University Mohamed ElZomor has earned a B.Sc and M.Eng in Construction from the American University in Cairo, in addition to M.Sc. in Architecture with an emphasis on Design and Energy Conservation from University of Arizona. He is currently a Construction Management Ph.D. Candidate in the School of Sustainability and the Built Environment at Arizona State University. Before embarking on his academic career, he gained valuable local and international
and mathematics, and helps them see therelevance to their everyday lives. Increasing middle school students’ interest in science inparticular is a strong predictor of later STEM career pursuit.The curriculum was designed around the Soap Box Derby® Mini-Cars that includes the use ofcomputer-aided design (CAD) software, virtual and physical wind tunnel testing, and 3Dprinting. Eighth-grade middle school science teachers participated in a one-week professionaldevelopment workshop to learn the software and how to integrate engineering into the force andmotion curriculum. They also engaged in ongoing professional development leading up to thelearning unit. The students were engaged in using technology (CAD Software, virtual windtunnel) to design
. Froyd is a Fellow of the IEEE, a Fellow of the American Society for Engineering Education (ASEE), an ABET Program Evaluator, the Editor-in- Chief for the IEEE Transactions on Education, a Senior Associate Editor for the Journal of Engineering Education, and an Associate Editor for the International Journal of STEM Education.Dr. Julie P Martin, Clemson University Julie P. Martin is an assistant professor of Engineering and Science Education at Clemson University. Her research interests focus on social factors affecting the recruitment, retention, and career development of underrepresented students in engineering. Dr. Martin is a 2009 NSF CAREER awardee for her research entitled, ”Influence of Social Capital on Under
program, is a provenmultidisciplinary program that provides research experiences to undergraduate students whoidentify as Native American. This program provides unique and quality research opportunities tostudents who may have minimal alternatives for undergraduate experiences of similar caliber.The primary IOU-NA objective is to expose Native American students with limited researchopportunities to top-of-the-line and innovative research environments in optics and photonics,including, but not limited to hydrology, chemistry, biology, environmental sciences, and othersciences. This fulfills the ultimate goal of initiating or developing aspirations in these students topursue scientific careers and graduate studies in STEM fields. The IOU-NA program
scheduled based on results from scholar surveys and journaling responses, whichincluded: WCU’s Career Services; Writing and Learning Commons, Math Tutoring Center,Library Research Liaison, and the Honor’s College. Additionally, peer-to-peer workgroups wereestablished to discuss and journal the anxiety themes within each groups’ activities.Year-one activities also included the development of peer-to-peer and faculty-scholar mentorshipgroups. These student lead groups sought to build foundational support for each scholar byestablishing learning communities with shared goals. The formation of these groups were bothorganic, with students self-selecting group membership, or highly structured by the programdirectors. Structured group membership was based
economically disadvantaged students, (2011-2014). Associate Director, Engineering Discovery Days. The largest UW College of Engineering annual event brings over 8,000 students and families to campus to explore engineering through interactive activities, (2012-2014). Board President, NW Career Educators and Employers Association. Organization brings together career educators and employers to improve the economic vitality of the Pacific Northwest, (2008). Collaborators Dr. Robert G. Olsen, Professor of Electrical and Computer Engineering, Washington State University Dr. John Schneider, Associate Dean of Engineering and Architecture and Professor of Electrical and Computer Engineering, Washington State University Kirk
the same college) andmay be considered similar by some. This project has exposed significant differences in howengineering and computer science majors think about their career trajectories. These differenceshave led to modifications in data collection and the need to carefully consider the applicability ofclassroom activities. Our poster will highlight how we have adapted our data collection methodsto be relevant to both engineering and computer science classes. For example, the primarypurpose of the grant is to develop inclusive professional identities. While those pursuing anengineering degree generally have a clear objective of becoming a “practicing engineer,” there isno single collective term applicable to the professional careers
compiled by the authors andincluded questions related to two different theoretical frameworks. Social Cognitive CareerTheory (SCCT) was used to investigate student career development, including their intention toremain in engineering. The SCCT questions used on the EAA were adapted from Lent et al.13.The Patterns of Adaptive Leaning Scale (PALS)14 was used to measure constructs related toachievement goal theory as a way to investigate possible changes or differences in motivationand their relationship to academic outcomes of interest between the control and interventionsections. Further background and results for these two frameworks are provided in subsequentsections.In addition to these quantitative tools, video recordings of teams were made for
potential for success in computer science and engineering technology. The CSET-STEM AdvisoryCommittee - consisting of the Program Manager of the Upward Bound Math and Science Project,Director of the Office of Enrollment Management, Director of the Office of Financial Aid, and thePI/Co-PIs of this project - will develop a CSET-STEM Scholars Program brochure to be distributed tothe targeted high schools and during XYZ STATE University student recruitment activities. Faculty andstudent representatives from National Society for Black Engineers (NSBE) and ACM, as well as firstyear CSET-STEM Scholars, will visit local schools to motivate students to pursue STEM courses andSTEM careers.(2) Retain these students through the incorporation of a mandatory pre
Paper ID #9774Transfer-to-Excellence: Research Experiences for Undergraduates at Cali-fornia Community CollegesDr. Sharnnia Artis, University of California, Berkeley Dr. Sharnnia Artis is the Education and Outreach Director for the Center for Energy Efficient Electronics Science, a NSF-funded Science and Technology Center at the University of California, Berkeley. She oversees undergraduate research programs to recruit and retain underrepresented students in science and engineering and science and also outreach to pre-college students to introduce them to the exciting career opportunities in science and engineering. Dr
Paper ID #32798Scholarships in Science, Technology, Engineering, and Mathematics(S-STEM) Engineering Scholars Program at a Two-Year College: Prelimi-naryInterventions and OutcomesDr. Elizabeth A. Adams, Fresno City College Dr. Elizabeth Adams teaches full time as an Engineering Faculty member at Fresno City College in Fresno, California. She a civil engineer with a background in infrastructure design and management, and project management. Her consulting experience spanned eight years and included extensive work with the US military in Japan, Korea, and Hawaii. In 2008 Elizabeth shifted the focus of her career to education
(15.2%) compared to enrollment patterns in the general student population (21.7%). Disparitiesin enrollment are partnered with inequitable rates of course completion, with historicallyunderserved students completing 71% of these courses with a grade of C or better, compared toan 82% course success rate for their peers. These demographics mirror national demographictrends that indicate student access to degree and career opportunities in STEM offered by twoyear colleges disproportionately favors students who identify with hegemonic norms in STEM[2],[3]. The SEECRS project represents one institutions attempts at designing programming todismantle structures that reproduce these disparities.Beginning in 2018, Whatcom Community College started