balance between a number of opposingforces. A minimum of fundamentals in science and math are required to prepare students fortheir sophomore engineering coursework, and exposure to the nature of engineering and itsopportunities is needed to enable students to identify an appropriate career path. However, theacademic rigor of the first year in engineering is overly challenging and even shocking for manystudents. Still, calls for engineering education reform speak of educating students in areas ofcommunication, ethics and professionalism, design, working in teams, leadership,entrepreneurship, and global understanding (to name a few), all of which vie for curriculum time.As we seek to transform the first year we also need to keep an eye to current
Education Annual Conference & Exposition Copyright 2004, American Society for Engineering Education” • Level 2 (Understanding) implies a thorough mental grasp and comprehension of a concept or topic. Understanding typically requires more than abstract knowledge. For example, an engineer with an understanding of professional and ethical responsibility should be able to identify and to communicate ethical issues arising from a practical case study. • Level 3 (Ability) is a capability to perform with competence. An engineer with the ability to design a particular system can take responsibility for the system, identifying all
programs respond to questions about the inclusion and coverage of the topics of ethics,corporate social responsibility, and sustainability at their institutions. In terms of sustainabilitythey found that one third of these schools require all three topics as part of the MBA program,and there is a trend toward the inclusion of sustainability-related courses. Also, that several ofthese schools are teaching these topics using experiential learning and immersion techniques.The World Resources Institute and the Aspen Institute annually publishes a list of the top 100full-time MBA programs that integrate environmental and social content into the curriculum (seewebsite at http://beyondgreypinstripes.org/rankings/index.cfm). According to this website
; engineering ethics; and pop culture.Dr. Qin Zhu, Virginia Polytechnic Institute and State University Dr. Zhu is Associate Professor in the Department of Engineering Education and Affiliate Faculty in the Department of Science, Technology & Society and the Center for Human-Computer Interaction at Virginia Tech. Dr. Zhu is also an Affiliate Researcher at the Colorado School of Mines. Dr. Zhu is Editor for International Perspectives at the Online Ethics Center for Engineering and Science, Associate Editor for Engineering Studies, and Executive Committee Member of the International Society for Ethics Across the Curriculum. Dr. Zhu’s research interests include global and international engineering education, engineering
were frequently sanctioned and enforced by the Federal Government, real estateorganizations and their codes of ethics, local municipalities, and neighborhood associations [3].Practices of unequal development of infrastructure run deep in the many elements of the builtenvironment and have severely impacted the ability of people of color, especially AfricanAmericans, to own property, build intergenerational wealth, and advance to a highersocioeconomic status as they were denied access to the best schools, services, and infrastructure.Civil engineers, through the exercise of their profession, have a direct impact on communitiesand individual lives, either positive or negative, especially concerning infrastructure systems. Itis necessary to
six individual skillmodules covering skills such as dependability, responsibility, independence, persistence,integrity, and ethics. The main goal is to create multiple opportunities to teach and reinforcesoft skills within the regular technical curriculum in the high schools. This paper discussesthe integration of the soft skills modules into the technical curriculum developed viaexamples, and outlines its potential uses in this engineering department’s curriculumincluding its manufacturing engineering program. The paper concludes with a discussion ofthe implementation of this project and provides some preliminary feedback from theparticipating high schools and reflections of the authors. It also includes future workopportunities such as
offer support for schools in which engineeringcourses can not be implemented thoroughly due to lack of engineering education professionals orresources [10, p. 21]. However, in this framework the relationship between engineering designand technology with societal impact is framed under the concept of professionalism, referring toengineering ethics. The framework goes so far to state that, “technology by itself is neutral anddoes not affect people or the environment. However, it is the way in which people develop anduse technology that determines if it is helpful or harmful” [10, p. 74]. Such a statement removesresponsibility of harm from the engineers by displacing impact onto the users. In this project, we are working to integrate youth
into our daily lives and industriessignaling a profound transformation on the horizon.IoT at Higher Education InstitutionsHigher education institutions, and universities in particular, find themselves at a critical juncturewhere they can play a pivotal role in shaping the trajectory of IoT technologies, evolvingbusiness models, ethical considerations, and the cultivation of future IoT leaders. Universities areincreasingly becoming hubs of innovation and experimentation in the IoT landscape. Forexample, within these academic institutions, computer science and engineering faculties arespearheading IoT laboratories dedicated to the development and refinement of IoT technologies.This hands-on approach not only fosters technical expertise but also
Outcomes3: - An ability to apply knowledge of mathematics, science, and engineering - An ability to design and conduct experiments, as well as to analyze and interpret data - An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability - An ability to function on multidisciplinary teams - An ability to identify, formulate, and solve engineering problems - An understanding of professional and ethical responsibility - An ability to communicate effectively - The broad education necessary to understand the impact of engineering solutions in a global
simultaneously. This method has been used across the college since 2006,resulting in a dedicated community of 40+ engineering faculty using direct assessment toevaluate the efficacy of their own programs, and to plan and implement improvement at bothcourse and program levels. The Engineering Professional Skills Assessment (EPSA) is the onlydirect method for teaching and measuring these skills simultaneously in the literature; thetechnical paper describing Year 1 implementation of the method won the 2008 ASEE BestOverall Conference Paper Award5 . Table 1.ABET Criterion 3 Professional Skills Student Learning Outcomes 3d Ability to Function on Multidisciplinary Teams 3f Understanding of Professional and Ethical Responsibility 3g Ability to Communicate
“three legged stool” ofeducation, examination, and experience.Current qualifications required for licensure vary from state to state. All jurisdictions willprovide a license to a “Model Law Engineer” who possesses Model Law attributes including: abaccalaureate degree in engineering from a program accredited by the Engineering AccreditationCommission of ABET (“EAC/ABET”); four years or more of acceptable and progressiveengineering experience; documentation of having passed both the Fundamentals of Engineering(FE) examination and the Principles and Practices of Engineering (PE) examination, and; arecord which is clear of violations of ethical standards. Most states have other additionalpathways to engineering licensure for those with alternative
, University of Pittsburgh c American Society for Engineering Education, 2014 Paper ID #9405 Larry Shuman is senior associate dean for academic affairs and distinguished service professor of in- dustrial engineering, Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering educational experience, emphasizing assessment of learning and problem solving abilities, and studying the ethical behavior of engineers and engineering managers. He has led the development of a very successful cooperative engineering education program and an innovative study abroad
. Page 24.1094.1 c American Society for Engineering Education, 2014 Space Shuttle Case Studies: Challenger and ColumbiaAbstractThe two Space Shuttle tragedies, Challenger and Columbia, have led to many papers on casestudies on engineering ethics. The Challenger disaster in particular is often discussed due to theinfamous teleconference that took place the night before the launch in which some engineerstried to postpone the launch. However, the space shuttle program itself is worthy of study as itrelates to the engineering design process, and the details of the Challenger and Columbiadisasters are worthy of discussion as they relate to a variety of sub-disciplines, including materialscience
promote a movement toward Solidarity Engineering that contributes to an ethic of care,love, equity, and justice among people and planet.Keywords: Solidarity Engineering, Ethics of Care, Love, Social Justice, Equity, Sustainability,Capitalism, Militarism, Collaborative Inquiry, Engineering PathwaysIntroduction “We live in a world in which a tree is worth more, financially, dead than alive, in a world in which a whale is worth more dead than alive. For so long as our economy works in that way and corporations go unregulated, they're going to continue to destroy trees, to kill whales, to mine the earth, and to continue to pull oil out of the ground, even though we know it is destroying the planet and we know that
Capstone CourseKeywords: Capstone Projects, Electrical Engineering Education, Generative AI in Education,ChatGPT, Entrepreneurship in Engineering, Marketing and Design Requirements, ABET.1. IntroductionIn recent years, many engineering programs have integrated entrepreneurship education into thecapstone experience, blending technical engineering skills with entrepreneurial processes,namely ideation, customer discovery, client validation, and commercial viability [3] Theseprocesses enable students to translate their technical knowledge into economically relevantengineering practice. The objective is to produce graduates who are not only technicallyproficient but also capable of navigating the business landscape, ethically aware, and responsiveto
characters long, as well as names thatcould not be used in advertising because of alternate meanings in other languages.5. Ethics. Most people trust their fellow business founders to be acting as responsible professionals andnever contemplate one of them hacking the company employee’s emails, stealing intellectual property,or suffering from a disease that can compromise their ability to act rationally and ethically. Whenrequesting to have your operating agreement created by your attorney think about having them add asection where you adopt a simple ethical code. The National Society of Professional Engineer’sFundamental Canons [18] only requires a few adjustments to fit a corporate setting and is familiar tomost engineers. It is also recommended to
interest topics (e.g., grand challenges), professional skills (e.g., teamwork, leadership),academic advising, mathematics skills, introduction to the engineering profession (e.g.,professional societies, types of engineering, ethics), and engineering specific technology/tools(e.g., MATLAB, CAD) [2]. Additionally, interactions between first-year students and bothfaculty and upper division peers have been found to positively impact retention of students inengineering programs. The goals of a typical FYE 1.0 program are to [2]: • Provide students the opportunity to interact with engineering faculty and upper-division engineering students to improve their sense of belonging in the engineering discipline. • Help students develop the skills
, too. They ask for more flexibility. They struggle topay attention in class. And they display reduced professional behaviors. For instance, they wearearbuds during class, they show up late to class, they are on their devices more during class, theydo not work to establish meaningful relationships with the instructional team, or they miss classor assignments without communicating with the instructor. Problem-solving these commonchallenges is pertinent to all disciplines. We present an engineering education pedagogicalstrategy and assessment.While the specifics of professionalism is debated [4], [5], [6], there is some consensus around“professional skills”: communication, teamwork, and ethics [7]. Interpersonal skills have beenhighlighted as
several premier journals, including the Journal of Educational Psychology, Journal of Higher Education, and Science and Engineering and Ethics. She is a contributing author to several books published by Oxford University Press, Teachers College Press, and University of California Press. She served as President for the Korean American Educational Researchers Association, including President in 2013-2014, and Chair of the KAERA Board of Directors in 2019-2020.Dr. Jerry Lynn Dahlberg Jr, University of Tennessee Space Institute Jerry Dahlberg is the Senior Director of Research at the University of Tennessee Space Institute. Prior to joining UTSI, he was an Assistant Teaching Professor and Senior Design Committee Chair at the
, nanoparticle diffusion, and engineering and physics education.Lily Skau, Austin Peay State University Lily Skau is an undergraduate student at Austin Peay State University pursuing a bachelor’s degree in Engineering Physics and a minor in Mathematics and Sociology. She plans to graduate with her degree and minors in May of 2026 and enter the industry as a Mechanical Engineer. ©American Society for Engineering Education, 2025 Where Empathy is Needed in Engineering Formation Abstract Engineers are called upon to solve the complex problems plaguing society. These problems are intellectually rigorous and steeped in societal, ethical, and geographic
-word challenges with equity and justice. In recent years, there has been considerableimprovement in providing students in higher education with professional skills needed to beemployable and successful in their respective profession. Such skills include communication,ethics, collaboration, leadership, and global awareness (including the social and environmentalimpacts of engineering). Yet, much of the engineering education employed in the K-12 settingfocuses on the technical outcomes and skills. This study explores the use of an environmentaljustice-focused curriculum, namely StoryMaps that facilitate a deeper exploration of the complexinterconnections of air quality, transportation, and engineering, as a part of a larger CreativeEngineering
Engineering, English,Communication, Rhetoric, Theatre, Visual Art and Design, Science and Technology Studies, andEngineering Education. Our teaching responsibilities run the gamut of transdisciplinaryinstruction, including communication, science and society, professionalism, team skills,leadership and ethics, and responsibilities as an artist-in-residence, with instruction andsupervision at the undergraduate and graduate levels. Our research interests reflect theseactivities and our career stages span from graduate school to near retirement. We are united by acommon interest in how engineering students develop mindsets that enable effective humanisticpractice, and we share common values in supporting our students’ development of
Organize and critically interpret generated and received information Professionalism Articulate the roles and responsibilities of the professional engineer in society Describe the importance of codes, standards, best practices, laws and regulations in engineering Impact on Society Identify the relevance of and uncertainty associated with different aspects of an engineering project Analyze the social, health, safety and environmental aspects of an engineering project Ethics and equity Identify ethical and unethical behavior in professional situations Identify how an
activity” [23], and moreover, arguedthat “Now, more than ever, as engineering educators we need to explore and analyze howstudents’ core values may clash with engineering Discourses” [23].Personal Value and Decision Making, Prosocial Behaviour, Ethics and EmpathyBayram [24] argued that “values are intimately related to prosocial behaviour” [24, p.4]. Shedefines prosocial behaviour as “actions undertaken to benefit and help others (citing [25],[26])” [24, p.1], and argues that it can be traced back and predicted by basic human values.She finds in her study, that Self Transcendence and Openness to Change values are indeedreliable predictors of support for “foreign development assistance”, or in other words,prosocial behaviour (as she explains it
commitment to assessing specific approaches to teaching, learning, andstudent learning outcomes. The report, Engineer of 2020 Project, Visions of Engineering in theNew Century, identifies the attributes and abilities engineers will need to perform well in a worlddriven by rapid technological advancements, national security needs, aging infrastructure indeveloped countries, environmental challenges brought about by population growth anddiminishing resources, and the creation of new disciplines at the interfaces between engineeringand science. To ensure that future engineers have these capabilities, they must be educated to benot only technically proficient, but also ethically grounded global citizens who can becomeleaders in business and public
X X X desired needs. (d) An ability to function on multidisciplinary X X X teams (e) An ability to identify, formulate, and solve EECS 115 X X engineering problems. (f) An understanding of professional and EECS 129 X X ethical responsibility. (g) An ability to communicate effectively. X X X (h) A broad education necessary to understand General impact of engineering solutions in a
processes, d. an ability to apply creativity in the design of systems, components or processes appropriate to program objectives, e. an ability to function effectively on teams, f. an ability to identify, analyze and solve technical problems, g. an ability to communicate effectively, h. a recognition of the need for, and an ability to engage in lifelong learning, i. an ability to understand professional, ethical and social responsibilities, j. a respect for diversity and a knowledge of contemporary professional, societal and global issues, k. a commitment to quality, timeliness, and continuous
ClassroomIntroductionEngineering educators point to a persistent problem that positions the engineering profession inapolitical and neutral terms. We call this the “neutrality problem” and describe it as placingmoral weight not on the work of engineers but instead the ad hoc uses of engineered artifacts.The problem appears in common assumptions that, for instance, guns are only as violent as theirusers intend them to be, absolving engineers of moral responsibility for the socio-technicaloutcomes that they helped to produce. The “neutrality problem” has a long history of beingchallenged by critically engaged engineering educators. Some challenge the problem by callingfor “non-canonical engineering ethics canons,”1 others advocate for a “peace paradigm” to beincluded in
Paper ID #21056What Do First-year and Senior Civil Engineering Students Think About Rais-ing the Bar on the Education Requirements for Professional Licensure?Dr. Angela R. Bielefeldt, University of Colorado, Boulder Angela Bielefeldt is a professor at the University of Colorado Boulder in the Department of Civil, Environ- mental, and Architectural Engineering (CEAE). She serves as the ABET assessment coordinator for the department. Professor Bielefeldt’s research interests in engineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity. Bielefeldt is also a licensed P.E
how that learning supports transfer of learning from school into professional practice as well as exploring students’ conceptions of diversity and its importance within engineering fields.Dr. Nathan E. Canney, CYS Structural Engineers Inc. Dr. Canney conducts research focused on engineering education, specifically the development of social responsibility in engineering students. Other areas of interest include ethics, service learning, and sus- tainability education. Dr. Canney received bachelors degrees in Civil Engineering and Mathematics from Seattle University, a masters in Civil Engineering from Stanford University with an emphasis on structural engineering, and a PhD in Civil Engineering from the University of