Marie SchmiedekampDr. Peter J. Shull, Pennsylvania State University, Altoona Campus Dr. Peter J. Shull is an associate professor of engineering at Penn State University. He received his under- graduate degree from Bucknell University in mechanical engineering and his graduate degrees from The Johns Hopkins University in engineering science. Dr. Shull’s research has two main foci—nondestructive evaluation methods as applied to process control (NDE) and pedagogical methodology. Dr. Shull’s peda- gogical efforts include meta-cognitive strategy learning to improve student academic success, an interest in women’s issues within the engineering environment, integrated, experiential techniques to improve engineering students
respective departmental capstone course. Communication andscheduling between the teams were the biggest challenges in this model. In an effort to improvemultidisciplinary design, faculty from 3 engineering departments at UCSB met over the courseof an academic quarter to discuss a more integrated multidisciplinary capstone design programfor seniors. One complicating factor was departmental pressure to maintain the discipline-specific integrity of the engineering experience throughout the student body. Anothercomplicating factor included the disparity between course units and timelines created by eachdiscipline. In response to these challenges, we have created a supplementary multidisciplinarycapstone course (SMCC) to be coupled to the existing
devices, to the softwarebehind data collection, as well as integrative technologies, to finally the requirements from end-users. The students’ research topics were agreed at the outset between the parties concerned (i.e.,academic supervisors and industrial co-sponsors, typically, although in a few occasions thecandidate participated in the definition of the project as well). The research topics wereadvertised as available projects and candidates would apply to a specific project with anallocated supervisory team.The researchers enrolled in the degree program follow a bespoke, student-centric industry-informed program of training which includes: (i) A focused, deep technical training andexperience in an embedded intelligence thematic area central
Computer Engineering at Rose-Hulman Institute of Technology. At Rose-Hulman, he co-created the Integrated, First-Year Curriculum in Science, Engineering and Mathematics, which was recognized in 1997 with a Hesburgh Award Certificate of Excellence. He served as Project Director a Na- tional Science Foundation (NSF) Engineering Education Coalition in which six institutions systematically renewed, assessed, and institutionalized innovative undergraduate engineering curricula. He has authored over 70 papers and offered over 30 workshops on faculty development, curricular change processes, cur- riculum redesign, and assessment. He has served as a program co-chair for three Frontiers in Education Conferences and the general
Paper ID #22147Building Your Change-agent Toolkit: The Power of StoryDr. Jennifer Karlin, Minnesota State University, Mankato Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial engineering and held the Pietz professorship for entrepreneurship and economic development. She is now a research professor of integrated engineering at Minnesota State University, Mankato, and the managing partner of Kaizen Academic.Prof. Rebecca A. Bates, Minnesota State University, Mankato Rebecca A. Bates received the Ph.D. degree in electrical
situations.The study highlights the critical deficiency in engineering education at preparing students forethical and professional responsibilities in the workplace. Students expressed that theirundergraduate and graduate programs overly emphasized technical skills while neglectingprofessional development, communication skills, and ethics training. We found that thesecurricular priorities affected students’ perception of the culture of academic engineeringdepartments and, subsequently, shaped their own professional values and understanding ofengineers’ duty to society.Despite a handful of students viewing ethics as an unnecessary distraction to their curriculum,the majority expressed a desire for more expansive professional and ethics training
field, the Department of Manufacturing and Industrial Engineering provides asetting for technology development and applied research in the Engineering Technology (ENGT)program. According to the program description, engineering technology education emphasizesprimarily on the applied aspects of science and product improvement, industrial practices, andengineering operational functions. A capstone two-semester senior project course is a part of theengineering technology curriculum. This course provides the students an opportunity to addressand experience the critical problems faced in the day-to-day life of an engineer in an advancedmanufacturing industry. One such problem is to find a quick replacement for the damagedcritical part that limits the
Engineering, and many years of experience teaching and developing curriculum in various learning environments. She has taught technology integration and teacher training to undergrad- uate and graduate students at Arizona State University, students at the K-12 level locally and abroad, and various workshops and modules in business and industry. Dr. Larson is experienced in the application of instructional design, delivery, evaluation, and specializes in eLearning technologies for training and devel- opment. Her research focuses on the efficient and effective transfer of knowledge and learning techniques, innovative and interdisciplinary collaboration, and strengthening the bridge between K-12 learning and higher education
of view, and to continually makethe concepts more personal. The point of the individual discussion was not to delve too deeply into a particulardisaster or individual ethical decision, necessitating a decision tree or other analyticalformalisms. Rather, the purpose of each debate was to extend the thinking of the students andinfuse an ethical framework from which to view historical and current events with theexpectation that this approach would follow the students to more focused case studies that theywould see in the latter part of the engineering curriculum. The students appreciated both thehigh- and personal-level ethical discussions and communicated their enjoyment of being able tosimultaneously appreciate the technical and human
marketable skills.2. Project Goals and Tasks The project has multiple goals, as presented next. Goal 1: Establish and integrate a cybersecurity curriculum into the bachelor degrees in IT at USC and NNMC.The programs follow the philosophy of the Wright State Model (WSM)1 of Education. While theyare technology programs, students are required to take math and science up to calculus I. The taskssupporting Goal 1 include: Tasks for Goal 11.1 Create a new cybersecurity core course and implement major modifications in an existing course, which will become the second cybersecurity core course.1.2 Enhance a pre-requisite course by infusing cybersecurity content.1.3 Incorporate an internship experience in
in basic humanneeds. Additionally, it is important to implement these innovations through social entrepreneurship andleadership efforts for achieving the desired societal impact. To apply the above principles effectively,students (especially the Gen-Z students) need to have a skill set in understanding the role of engineeringinnovations in a globalized society with an attitude of leadership to serve society [16], which was themotivation behind this class. Selected successful social innovations across the world were studiedthrough the lens of fundamental science and engineering along with the societal impact. At the sametime, students also reflected on how the innovators applied/integrated leadership skills/approacheswith social
Paper ID #40685On the Importance of Spatiality and Intersectionality: Transgender andGender Nonconforming Undergraduate Engineering Experiences ThroughCritical Collaborative Ethnographic Site VisitsFinn Johnson M.A., Oregon State University Finn Johnson, M.A., is a transgender and queer doctoral student in women, gender, and sexuality studies at Oregon State University. Finn has extensive experience in transgender and queer research methodologies, legal studies, and feminist research ethics and is currently working on an engineering education NSF- funded study with the College of Chemical, Environmental, and Biological
integrating collaborative educational technologies likeMicrosoft Teams, Slack, and Discord into the class to promote group work outside of class.Students are using these features anyway and they can be a great way to increase peer-to-peercommunication in the class. Professors should go above and beyond to establish and encouragepersonal communications between students and teachers, whether via email, message board, orother channels. Facilitating group work during class meetings is vital to information retentionand helps to foster relationships between students and the professor, even though the class isonline. Professors should also make an effort to be reliable and consistent throughout the class;they should post information in a timely manner, keep
Paper ID #16578Longitudinal Success of Calculus I ReformDr. Doug Bullock, Boise State University Doug Bullock is an Associate Professor of Mathematics at Boise State University. His educational re- search interests include impacts of pedagogy on STEM student success and retention.Dr. Kathrine E. JohnsonDr. Janet Callahan, Boise State University Janet Callahan is Chair of Materials Science and Engineering at Boise State University. Dr. Callahan received her Ph.D. in Materials Science, M.S. in Metallurgy, and B.S. in Chemical Engineering from the University of Connecticut. Her educational research interests include freshman
Paper ID #33328Redesigning a Summer Math and Engineering Bootcamp for VirtualInstruction During the COVID-19 PandemicDr. Zahrasadat Alavi, California State University, Chico Dr. Zahrasadat Alavi, an Assistant Professor at the Department of Electrical and Computer Engineering at California State University Chico, received her PhD in Electrical Engineering from University of Wiscon- sin Milwaukee in May 2015. She received her B.Sc. and M.Sc. from Amirkabir University (Polytechnic of Tehran) with honors in 2007 and 2009 respectively, and another Master of Science from University of Wisconsin Milwaukee (UWM) in Electrical
role of lab safety manager and lab manager Apply – Create – Translate (ACT) 5 activities aligned with the research and goals of the program. Examples include: Modules ₋ Participate in STEM program for underrepresented groups ₋ Participate in K-12 outreach activities ₋ Technology commercialization activity through university programs or NSF I- CorpsTo achieve these goals, graduate students are integrated into interdisciplinary research teams, where theyactively and collaboratively work on important scientific and societal challenges in a rigorous manner.Our vision was to deliver this program in an
scholarships/stipends, summer teaching internships,structured field observation experiences, and rigorous teacher-preparation curriculum to preparethem to be successful, long-term members of the STEM teaching faculty in the SavannahChatham County Public School System (SCCPSS) and beyond. In partnership with SCCPSS, theproject team will provide post-graduation mentoring and follow-up to ensure a successfultransition to teaching and improve retention. Specific elements of the program include thefollowing: 1. Launching an aggressive recruitment plan for talented math and engineering majors to pursue teaching careers in 6 -12 secondary schools; 2. Implementing a comprehensive STEM teacher training program; 3. Providing Summer Educational
-op program as students need some engineeringknowledge and skills before entering the workforce. As a result, the engineering curriculum wasdesigned so that engineering-specific courses were pushed earlier into the students’ academiccareers and general education courses were spread out more evenly over the course of theprogram. Recognizing that engineering professionals need to be able to write [16], [17] projectproposals, proposal development and technical writing was integrated into the secondcooperative education semester and well in advance of the senior design project.As enrollment in engineering programs grew, managing the volume of co-op placements andindustry projects became more challenging. Additional faculty were hired to manage
, DiPietro, Lovett, & Norman, 2010). The focus of this work-in-progress is tobetter understand how these factors manifest in the micro-level interactions that take place withinan engineering curriculum as part of an engineering design process. In this case, we areinterested in how gender composition might affect the ways engineering teams engage in andtalk during brainstorming activities.To do so, we developed an exploratory, mixed-methods study to examine potential factors thatmight influence ideation effectiveness for engineering teams. The present work is focused on ourqualitative codebook development related to the ways power manifests in conversation duringbrainstorming.Engineering Design Processes and Conceptual DesignThe engineering
Examiner, Setterfield balanced building code requirements with owner and contractor concerns. Setterfield teaches Autodesk Revit and its integration into analysis software, including Navisworks. Setterfield spearheaded a six-discipline IPD capstone resulting in student work that has been featured at various venues, including AU, the American Society for Engineering Educators and the League for Innovation in the Community College.Chad R. Bridgman, Sinclair Community College Chad currently serves as an Internship Coordinator for the Science, Mathematics, & Engineering Division at Sinclair Community College. Prior to managing the internship program he served as Aca- demic/Career Coach for Sinclair on a Department
power, electronics thermal management, and manufacturing. He has authored more than 140 technical publications. His honors include SAE’s Teetor Award, Rosten Award for Thermal Analysis of Electronic Equipment, ASME Curriculum Inno- vation Award, and Fischer Engineering Teacher of the Year Award. He is an ASME Fellow and on the Board of Directors of ASEE’s Engineering Research Council.Dr. Joseph J. Helble, Dartmouth College Joseph J. Helble is Professor of Engineering, and Dean of the Thayer School of Engineering at Dartmouth College, a position he has held since 2005. Prior to Dartmouth, Dr. Helble was the AAAS Revelle Fellow, spending a year on staff in the U.S. Senate with a focus on science policy. Previously, he
Office of Diversity Programs and Student DevelopmentIn this slide, we will explain how our program is structured. The five pillars of our programpromote the holistic development of our students. Taking this approach, we want to giveour students an idea of the performance of engineers in labor work; therefore, they willstart to construct an identity and engage with engineering as a profession and our campus.We will discuss what integrates each core and the skills they will gain by participating in theprogram.Bridge Bonding: This pillar helps students relate to each other's experiences andchallenges, making it easier for them to empathize and offer support
, and applied ethics journals. Herkert previously served as Editor of IEEE Technology and Society Magazine and an Associate Editor of Engineering Studies. He is or has been an active leader in many professional or- ganizations including the Society for Ethics Across the Curriculum, the Society on Social Implications of Technology (SSIT) of the Institute of Electrical and Electronics Engineers (IEEE), the National Insti- tute for Engineering Ethics, and the Engineering Ethics and Liberal Education/Engineering and Society (LEES) Divisions of the American Society for Engineering Education. In 2005 Herkert received the Ster- ling Olmsted Award, the highest honor bestowed by LEES, for ”making significant contributions in
Computer Engineering and a rich academic experience spanning six years, her overarching goal is to craft engineering learning environments and experiences in a way that intricately engages students on a cognitive level. In addition to her role as an engineer and researcher, Shabnam is an advocate and ally for fostering greater inclusion in STEM fields and beyond.Dr. Nicole P. Pitterson, Virginia Polytechnic Institute and State University Nicole is an assistant professor in the Department of Engineering Education at Virginia Tech. Prior to joining VT, Dr. Pitterson was a postdoctoral scholar at Oregon State University. She holds a PhD in Engineering Education from Purdue University and oth
equitable engineering environments.Dr. Shanna R. Daly, University of Michigan Shanna Daly is an Associate Professor in Mechanical Engineering at the University of Michigan. She has a B.E. in Chemical Engineering from the University of Dayton and a Ph.D. in Engineering Education from Purdue University. Her research characterizes front-end design practices across the student to practitioner continuum and studies the impact of developed front-end design tools on design success.Dr. Lisa R. Lattuca, University of Michigan Lisa Lattuca, Professor of Higher Education and member of the Core Faculty in the Engineering Education Research Program at the University of Michigan. She studies curriculum, teaching, and learning in college
] - [13]. Mentoring is notlimited to faculty-student interactions. An early study by Good [14] indicated that freshmenneeded networking with upperclassmen to ease the transition from high school to university.Clark et al. [15] attributed peer relationships as a key factor in the success of student satisfaction,integration and retention in higher education. Peer mentoring can build a community of supportfor the mentee (i.e., freshmen) while enhancing the teamwork, instruction and communicationskills of the mentor (i.e., senior) [10]. When mentoring is from someone that is close in age andposition, it can also provide encouragement and social support [11]. Social support from mentorsand other women in STEM increased women’s persistence in STEM [16
officially began in Guthrie on Christmas Eve 1890 in the McKennon Opera House whenTerritorial Governor George W. Steele signed legislation providing for the establishment of anagricultural and mechanical college as well as an agricultural experiment station in PayneCounty, Oklahoma Territory, effective December 25, 1890 [5]. At long last, Stillwater wasdesignated as the location for the college by the designated commission. On May 15, 1957,Oklahoma A&M changed its name Oklahoma State University of Agricultural and AppliedSciences to reflect the broadening scope of curriculum offered. However, the name was quicklyshortened to Oklahoma State University for most purposes, and the "Agricultural & AppliedSciences" name was formally dropped in
ofretention in the major by 2.3 times compared to first-year students from prior years, while non-participation lowered the odds of retention by 1.35 times.IntroductionIn 2011, President Obama called for U.S. engineering schools to graduate an additional 10,000engineering students every year.1 One impetus for making this appeal, as explained by the JobsCouncil, was that engineers drive innovation, creating jobs for skilled and unskilled workersalike.2 In short: more engineers can drive economic recovery, and by extension, stability. Inresponse to the appeal, many engineering school deans recognized that one solution was toimprove the retention rate of engineering students,3 specifically first-year retention, which at thetime was reported to be around
) community impacts from project implementation. [4-6, 13,14]. Through support of an NSF IUSE Development and Implementation Tier grant, the C-EEEMis now in its second year for replication in two cities, Youngstown, Ohio and Louisville,Kentucky.By operating in the complexity of a real-world context and providing more personalized learningand professional skill building supporting personalized learning and professional skill building,the C-EEEM represents and example of the future of engineering education [15]. Nonetheless,the C-EEEM learning environment also supports a range of STEM and STEM-adjacentdisciplines. Through a careful curriculum that centers on community-driven, strategicallydeveloped projects in critical areas for these communities (e.g
the control group, theexperiment group was shown how many intentionally buggy instructor solutions their testsexposed.Our results measured the quality of student test cases for the control and experiment groups. Afterstudents in the experiment group completed two projects with additional feedback on their testcases, they completed a final project without the additional feedback. Despite not receivingadditional feedback, their test cases were of higher quality, exposing on average 5% more buggysolutions than students from the control group. We found this difference to be statisticallysignificant after controlling for GPA and whether students worked alone or with a partner.2 IntroductionTesting is an integral part of software development that