Paper ID #38579Undergraduate Engineering Students’ Time Management and Self EfficacyinDifferent Learning FormatsTara EsfahaniDr. David A. Copp, University of California, Irvine David A. Copp received the B.S. degree in mechanical engineering from the University of Arizona and the M.S. and Ph.D. degrees in mechanical engineering from the University of California, Santa Barbara. He is currently an Assistant Professor of Teaching at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. Prior to joining UCI, he was a Senior Member of the Technical Staff at Sandia National
and served in several ad- ministrative roles within higher education; secured over $5.5M funding and support for STEM education research; and led several program development efforts, including: a childcare facility at a federal research laboratory, STEM K-12 teacher training programs, a Molecular Biology/Biotechnology master’s degree program at a small internationally-focused teaching institution, as well as a first-year engineering program and a B.S. Engineering Technology degree program at an R1 research institution. She has been recognized for her teaching, advising, and service, and as an Exemplary Faculty Member for Excellence in Diversity, Equity, and Inclusion.Dr. David A. Wyrick PE, CPEM, West Virginia
Paper ID #37014Work In Progress: Professional Development Through High-Impact Experi-encesDr. Charles Patrick Jr., Texas A&M University Dr. Charles Patrick Jr. currently serves as a Professor of Practice in the Department of Biomedical Engi- neering at Texas A&M University. He serves as Director of the Undergraduate Program and administers the Ideas to Innovation Engineering Education Excellence Laboratory. He is involved in Texas A&M’s Center for Teaching Excellence, the Institute for Engineering Education and Innovation, and the College of Engineering’s Faculty Engineering Education Group. His research focuses
dealing with architecture, structural engineering, sustainability, and humanitarianengineering. Some highlights include: MSU Denver study abroad course entitled Refurbishment of Structures hosted by UP in 2010 First UP visiting professor instructing at MSU Denver in 2011 English immersion program at MSU Denver in support of the Master’s in Architecture English-language program at UP in 2013 Collaborative development of an Architecture Minor at MSU Denver from 2013 through 2015 English immersion program for UP engineering faculty at MSU Denver in 2016 Collaborative Research on “Laboratory Testing of Timber-Concrete Composites Adaptable Architecture” from 2013 through present UP
renewable energy, small wind turbine aerodynamics, and noise generation as it applies to the urban environment. Currently, he designs small Unmanned Aerial System propellers, reducing noise and power requirements.Dr. Blake Everett Johnson, University of Illinois Urbana-Champaign Dr. Blake Everett Johnson is a Teaching Assistant Professor and instructional laboratory manager in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. His research interests include experimental fluid mechanics, measurement science, engineering education, engineering leadership, and professional identity development.Dr. Liping Liu, Lawrence Technological University Liping Liu is an associate
-strain curves from materialsamples upon which the remainder of the course content is built. The global pandemic forcedengineering students online, challenging materials laboratory instructors to adapt instructionaldelivery to remote learners.There currently exist no ABET-accredited undergraduate mechanical engineering programs taughtfully online.i Moreover, while many other college disciplines have extensive histories of successfulremote and online instruction, the engineering education community has limited experienceteaching lab classes online. Affordable, small, and easily mailed experimental educational lab kitshave emerged as a key advancement in hands-on undergraduate engineering instruction. ii,iii Asmall, inexpensive, and safe benchtop
domestic undergraduate students in focus in the United States higher education institutions. In addition, Mr. Halkiyo is interested in broadening the participation of engineering edu- cation in Ethiopian universities to increase the diversity, inclusivity, equity, and quality of Engineering Education. He studies how different student groups such as women and men, rich and poor, students from rural and urban, and technologically literate and less literate can have quality and equitable learning experiences and thrive in their performances. In doing so, he focuses on engineering education policies and practices in teaching and learning processes, assessments, laboratories, and practical internships. Mr. Halkiyo has been
Paper ID #40289What Difference Does Difference Make? A Case Study of Racial and EthnicDiversity in a Summer Intensive Research InstituteTryphenia B. Peele-Eady, Ph.D., University of New Mexico Dr. Tryphenia B. Peele-Eady is an Associate Professor of Language, Literacy, and Sociocultural Studies in the College of Education and Human Sciences at the University of New Mexico, where she specializes in African American education and ethnographic research. Her reserach focuses on the social, cultural, and linguistic contexts of teaching and learning practices, particularly in the African American community, and culturally
recycled to perform casting.Background & Theory Sand casting is associated with a limited number of Capstone senior design programs offeringbachelor’s degrees in Materials Science and Engineering [i]. However, the technique is absent inthe mechanical engineering Capstone literature; presumably because it is not used elsewhere tosupport ME senior design. Some casting examples do exist in ME manufacturing laboratoryclasses [ii,iii], but predominantly simulation is used in leu of the physical casting process to aidstudent learning and understanding of underlying phenomena. [iv,v] To incorporate sand casting applications in an ME Capstone senior design course, we deployedthe “Energy Engineering Laboratory Module” (EELM) pedagogy. EELM
in the 21st century thanin the preceding timeframes. Engineering technology and the requirements from the globalworkforce are in constant evolution. This behooves engineering programs at universities acrossthe world to adapt their curricula to prepare the graduates for the challenges in the engineeringindustry. The engineering curriculum which adopts integrated projects on a centralizedengineering project platform [1] enables the student to become an active, intentional, and goal-oriented learner through problem-solving [2]-[3] in a project-based [4]-[6] and project-enhancedlearning [7] environment. Traditionally, core lecture and laboratory courses have been taught inrelative isolation of each other. This approach does not effectively
chemical engineers in the U.S. go intoindustry after they graduate, we agreed there would be advantages to finding ways for them tointeract meaningfully with industry professionals. A recent paper on the advantages of EducationalIntensification strengthens the rationale for creating such a program: “… increasing the interactionintensity between industrial practitioners and students better prepares the students for professionalcareers in many ways, including exposing them to the corporate work environment, teaching themvarious communication styles, and introducing them to practical technical approaches withcommercial components” [6].A second reason for adding an Industry Energy Program is that REM students are typically earlier inthe process of
Center. Dr. Raz research and teaching interests are in understanding collaborative autonomy and devel- oping systems engineering methodologies for integrating autonomous systems. Raz’s research brings a Systems Engineering perspective, particularly inspired by complex adaptive systems, to information fu- sion and artificial intelligence/machine learning technologies that form the foundations of collaborative and integrated autonomous systems. Prior to joining Mason, he was a Visiting Assistant Professor at Purdue University School of Aeronautics and Astronautics where he taught courses in aerospace systems design and led research projects for introducing machine learning techniques in high-speed aerospace systems. He
(SU) and the College of Science and Engineering (CSE) want to expandglobal engagement opportunities for students and faculty. Additionally, the Office of GlobalEngagement and CSE aim to develop partnerships with the members of the InternationalAssociation of Jesuit Engineering Schools (IAJES). However, challenges exist for both studentsand faculty to participate in global programs. Students face multiple barriers, including potentialimpacts on time to graduation, cost, and competing summer plans, such as internships andathletics. Faculty teach heavy course loads and limited resources exist to support development ofco-curricular activities. This pilot collaborative international engineering project provided ashort-term global engagement
from MIT, Master of Science in Nuclear Plasma and Radiological Engineering from University of Illinois Urbana Champaign, and Bach- elor of Science in Mechanical Engineering from MIT, and is currently teaching at St. Ambrose University in Davenport, Iowa teaching a variety of courses including Intro to Engineering, Heat Transfer, Control Theory, Electronics, and Senior Design. ©American Society for Engineering Education, 2023 Design of Entrepreneurially Minded (EM) Effective Learning Strategies for Engineering Students: Course Structure, Grading Rubrics, Syllabus Design, and In-Class Mini Labs for Student Motivation and Learning
Technology.Dr. Paul N Beuchat, The University of Melbourne Paul N. Beuchat received the B.Eng. degree in mechanical engineering and the B.Sc. degree in physics from the University of Melbourne, Melbourne, Australia, in 2008, and the M.Sc. degree in robotics, systems, and control in 2014 and the Ph.D. degree in 2019, from ETH Z¨urich, Z¨urich, Switzerland, where he completed his research with the Automatic Control Laboratory. He is currently working as a Teaching Fellow with the University of Melbourne. Paul’s research interests include control and optimization of large-scale systems with applications in the areas of building control and multi-agent robotics, as well as research investigating project-based learning pedagogies
Copyright ©2023, American Society for Engineering Education ETD 455Thus, opensource textbooks can be adapted to fit an instructor’s version of the course, and OERscan be incorporated in such adaptations.This work in progress paper describes redesigning three E/ET CAD courses with OER materials.The instructors who teach the courses are involved in this OER project and will implement OERsupported courses in Spring 2023. Use of free and open course materials will eliminate the costand access barrier in the first day of the class leveling the playing field for all students. OERbased CAD courses will send a positive signal to the students that the professor and
Marghitu, Auburn University Dr. Daniela Marghitu received her B.S. in Automation and Computing from Polytechnic University of Bucharest, and her Ph.D. degree in Automation and Computing from University of Craiova. She is a faculty member in the Computer Science and Software Engineering Department at Auburn Uni- versity, where she has worked since 1996. Her teaching experience includes a variety of Information Technology and Computing courses (e.g., Object-Oriented Programming for Engineers and Scientists, Introduction to Computing for Engineers and Scientists, Network Programming with HTML and Java, Web Development and Design Foundations with HTML 5.0, CSS3.0 and JavaScript, Personal Computer Applications
blended project based learning (sbpbl) model implementation in operating system course. International Journal of Emerging Technologies in Learning (IJET), 15(5): 202–211, 2020.[19] Divya Kundra and Ashish Sureka. An experience report on teaching compiler design concepts using case-based and project-based learning approaches. In 2016 IEEE Eighth International Conference on Technology for Education (T4E), pages 216–219. IEEE, 2016.[20] Marc Dahmen, Luis Quezada, Miguel Alfaro, Guillermo Fuertes, Claudio Aballay, and Manuel Vargas. Teaching artificial intelligence using project based learning. Technical report, EasyChair, 2020.[21] D Anitha, C Jeyamala, and D Kavitha. Assessing and enhancing creativity in a laboratory course with
Mechanical Engineering with a dissertation in intelligent energetic systems centered around shock physics. Jett has been working on the NMT Robotic Combat STEM Outreach team since early 2020 and has helped the program grow.Raechelle Sandoval Raechelle Sandoval is a graduate student at New Mexico Institute of Mining and Technology, working on a PhD in Intelligent and Energetic Systems. She has been a teachers assistant for the Intro to Mechanical Engineering course for three years.Dr. Curtis John O’Malley, New Mexico Institute of Mining and Technology Assistant Prof at NM Tech since 2016. Teach junior/senior design clinic as well as 1st semester intro- duction to mechanical engineering design. As part of these courses I
Paper ID #36614Students’ Preference for a Capstone Design Project: An Examination ofthe Impact of Accidental CompetenciesDr. Felix Ewere, North Carolina State University at Raleigh Dr. Felix Ewere is an Assistant Teaching Professor in the Department of Mechanical and Aerospace Engi- neering at North Carolina State University and Instructor of the Aerospace Engineering Capstone Senior Design courses. Engineering research interests are in the science and technology at the intersection of aerodynamics, structural mechanics, energy, and smart materials. Recent works have focused on exploit- ing aeroelastic instabilities on
, where he currently teaches first-year programming and user interface design courses, and serves on the college’s Capstone Design Committee. Much of his research involves design education pedagogy, including for- mative assessment of client-student interactions, modeling sources of engineering design constraints, and applying the entrepreneurial mindset to first-year programming projects through student engagement in educational software development. Estell earned his BS in Computer Science and Engineering degree from The University of Toledo and both his MS and PhD degrees in computer science from the University of Illinois at Urbana-Champaign.Dr. Stephany Coffman-Wolph, Ohio Northern University Dr. Stephany
skills beyond a single use normally requires feedback, which in-person lectures oronline videos rarely deliver. 1The master-student demonstration framework for spreadsheet training is also employed in manyengineering courses [9]. For example, sessions held in computer labs involve a professor orteaching assistant demonstrating spreadsheet skills or techniques that can be mimicked bystudents. While instructors can give real time feedback in computer laboratories with smallnumbers of students, measuring students’ spreadsheet skills at scale is quite difficult.Alternatively, multiple choice tests can assess spreadsheet skills [10]. Now, web-based platformscan deliver interactive content delivery and
defined by the following: i. The Learner is in a professional environment, generally in industry; ii. The Learner works towards a qualification that is relevant to the industry, and aligned with her/ his work profile; iii. The workplace is the natural setting for the delivery of the education, and is converted into a learning environment or class room/laboratory; iv. Synchronous instruction is employed to teach the fundamental principles, and applications, in core and advanced areas relevant to the domain, along with relevant laboratory sessions; v. Asynchronous means of instruction are employed to provide flexibility and ease of access, and most importantly, to keep the learner engaged constantly
Paper ID #39760Board 429: Variations in Motivation for Learning to Use MATLAB amongFirst-Year Engineering StudentsDr. Alison K Polasik, Campbell University Alison Polasik, Ph.D. joined the Campbell University School of Engineering in August 2018. Previously, she was an assistant professor of practice in The Ohio State University’s Materials Science & Engineering Department. She has a decade of experience teaching and designing curriculum and incorporating real- world scenarios in her courses. Her work in engineering education has been presented at conferences and published in peer-reviewed proceedings for the American
Leadership and Principal Certificate from Northern Arizona University in 2007. She is currently working on heRebekah Jongewaard, Arizona State UniversityMaryan RobledoSteven J. Zuiker, Arizona State University ©American Society for Engineering Education, 2023 Energizing the Engineering Pipeline with Agrivoltaics Citizen Science (Pre-College Resource Exchange) Authors: Janet Ankrum, Cheryl Carswell, Andrew Centanni, Melany Coates, Mia DeLaRosa, Rebekah Jongewaard, Michelle Jordan, Maryan Robledo, Steven ZuikerThe Sonoran Photovoltaics Laboratory (hereafter SPV Lab) organizes a regional approach topursuing photovoltaic (PV) engineering research for 4th-12th grade STEM teachers and
Paper ID #40278The Complete Engineer: How the Whiting School’s Engineering Manage-mentand Leadership Course Complements Senior DesignDr. Mia Baytop Russell, The Johns Hopkins UniversityMs. Illysa Izenberg, The Johns Hopkins University Illysa Izenberg has over 26 years of business experience, 6 in aˆ CœCorporate Americaˆa C and the rest in strategy and management consulting and coaching. Sheˆa C™s taught graduate students since 2006 and undergraduates since 2010. Currently, she teaches EnginMichael AgroninAabhas Jain ©American Society for Engineering Education, 2023The Complete Engineer: How the Johns
the Hokie Supervisor Spotlight Award in 2014, received the College of Engineering Graduate Student Mentor Award in 2018, and was inducted into the Virginia Tech Academy of Faculty Leadership in 2020. Dr. Matusovich has been a PI/Co-PI on 19 funded research projects including the NSF CAREER Award, with her share of funding being nearly $3 million. She has co-authored 2 book chapters, 34 journal publications, and more than 80 conference papers. She is recognized for her research and teaching, including Dean’s Awards for Outstanding New Faculty, Outstanding Teacher Award, and a Faculty Fellow. Dr. Matusovich has served the Educational Research and Methods (ERM) division of ASEE in many capacities over the past 10
-1987accreditation cycle) involves the teaching, scientific research, academic achievementsand leadership quality of management at all levels of the department. Criterion 7 ofthe general criteria for accreditation of Bachelor’s Degree in Engineering (2002-2003accreditation cycle) stipulates that engineering programs must have sufficientmanagement system support, financial support and constructive leadership to ensureengineering programs. To ensure the quality and continuity of education, there mustbe adequate funding to attract, maintain and provide for the continuing professionaldevelopment of high-quality teachers, and there must be adequate funding sources forthe purchase, use and maintenance of laboratory equipment associated withengineering education
Paper ID #37157What makes a solar engineer?Dr. Joseph Ranalli, Pennsylvania State University Hazleton Dr. Joseph Ranalli is an Associate Professor at Penn State Hazleton, teaching in the Alternative Energy and Power Generation Engineering program. He previously earned a BS from Penn State and a PhD from Virginia Tech, both in Mechanical Engineering. His research interests include solar energy and enhancing the use of technology resources in engineering education.Mesude Bayrakci Boz, Pennsylvania State University Hazleton Dr. Mesude Bayrakci Boz is an assistant professor engineering at Penn State Hazleton. She holds mas
thecommunity.The student cohort is working toward the ultimate deliverable of designing and building a living-learning laboratory. This laboratory will be created with maximum sustainability, with repurposedmaterials and architecture designed to work in tandem with the land on which it is built. The landis near the HBCU but not the PWI, generating a need for remote planning and collaboration. Inaddition, the laboratory will aim to benefit the local community by reflecting on the area's historyand context and contributing via learning resources, sustainable agriculture, and accessibleknowledge sharing.Our lessons learned are divided into three fundamental areas: using a PALAR framework,intentional community engagement, and genuine inter-institutional