Paper ID #37222Work in Progress: Developing a Foundational Engineering Course toImprove Students’ Sense of Belonging and Increase DiversityDr. Timothy Frank, U.S. Air Force Academy Lt Col Timothy Frank is the Deputy Department Head for Curriculum Development and Associate Pro- fessor of Civil and Environmental Engineering at the United States Air Force Academy. In this role, he develops leaders of character for the Air Force and Space Force by advising, teaching, and mentoring cadets. He received his B.S. and M.S. in Civil Engineering from the University of Illinois, and Ph.D. from Stanford. Lt Col Frank is a registered
Paper ID #38415Teamwork Assessment in Measurement and Instrumentation CourseDr. Cyrus Habibi, University of Wisconsin - Platteville Dr. Cyrus Habibi is an Associate Professor of Electrical Engineering at the University of Wisconsin- Platteville. With a Ph.D. in Electrical Engineering from the University of Wisconsin-Milwaukee, Dr. Habibi has dedicated his career to both research and teaching in the field of engineering. Dr. Habibi’s research interests include smart instruments and artificial intelligence, particularly in the context of time series prediction. In addition to his research, Dr. Habibi is a passionate educator
. The challenge requires students to construct a solar powered boat tocompete in several different categories including technical reports, visual displays,workmanship, sprint races and endurance events. Students learn to apply solar energy in atransportation efficient design and gain hands-on experience with sustainable energy and energymanagement. Each part is manufactured in the Middle Tennessee State University (MTSU)laboratories and more than 80% of the boat is built by hand.The Solar Boat project originated in 2004 by the MTSU Associate Dean of Basic and AppliedSciences, Dr. Saeed Foroudastan. Most students use this project to complete their Capstonecourse requirement, a necessity to graduate. Seniors help undergraduate level students
research includes alternative grading, entrepreneurial mindset, instructional laboratories, and equity-focused teaching. She teaches biomedical instrumentation, signal processing, and control systems. She earned a Ph.D. in Systems Engineering from the University of Illinois Urbana-Champaign, an M.S. in Electrical Engineering from Iowa State University, and a B.S. in Electrical Engineering from Rose-Hulman Institute of Technology.Arijit BanerjeeYi Zhou, University of Illinois at Urbana-Champaign Yi Zhou is currently pursuing the Ph.D. degree in electrical engineering with the University of Illinois at Urbana–Champaign, Urbana, IL, USA.Prof. Katie Ansell, University of Illinois, Urbana-Champaign Katie Ansell is a Teaching
process, subjectmatter of study, the context, and the human condition [2]. Kolb classified “engagement with thesubject matter of study” as experiential learning in which students learn by engaging themselvesin the field case studies or laboratory experiences, or computer simulations [4]. This engagementstimulates student learning through an intervention based on real-world experience. Wrightindicates these interventions can take place with minimal logistic constraints when applied shortterm [5].One of the leading and well-researched models for EL is Kolb’s Experiential Learning Cycle [4].The application of Kolb’s Experiential Learning Theory consisting of a four-stage cycle(experiencing, reflecting, thinking, and acting) is widely popular in many
60% ofstudents pursuing a major in a STEM degree in the US do not complete their degree [3].At the national level, it is evident that there is a need to change STEM education in order to bemore effective and accessible to all students [3]. A similar sentiment has been echoed by studentswho have indicated that their undergraduate engineering education experience could beimproved by changing teaching styles and techniques [4]. There is some indication that highereducation is beginning to implement a wide range of teaching practices and strategies (WATPS)[2]. Including a WATPS is not only beneficial for higher education in terms of attracting andretaining students but also for students and industry as a WATPS assists with preparing work-ready
current research interests lie in theapplications of materials science and advanced manufacturing methods.Ben FlemingBen Fleming is the long-time machinist of the mechanical engineering department at theUniversity of Arkansas. He has a career of knowledge in manufacturing and over 20 years ofexperience helping students build their senior design projects. He offers an outside-of-classopportunity born out of his own passion to teach students about design for manufacturabilitythrough machine shop instruction.Han HuHan Hu is an Assistant Professor in the Department of Mechanical Engineering at the Universityof Arkansas. He leads the Nano Energy and Data-Driven Discovery (NED3) Laboratory, and hisresearch includes experimental characterization and
Paper ID #39729Board 418: Understanding Context: Propagation and Effectiveness of theConcept Warehouse in Mechanical Engineering at Five Diverse Institutionsand Beyond – Results from Year 4Dr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. He has been at Cal Poly San Luis Obispo since 2006, where his research interests include aerospace
Paper ID #40240Building and Testing an Economic Faraday Cage for Wireless, IoTComputing Education and ResearchColton HotchkissDr. Ananth Jillepalli, Washington State University https://www.linkedin.com/in/ajillepalliStu SteinerDaniel Conte de LeonDr. Herbert L. Hess, University of Idaho Herb Hess is Professor of Electrical Engineering at the University of Idaho. He received the PhD Degree from the University of Wisconsin-Madison in 1993. His research and teaching interests are in power electronics, electric machines and drives, electricDr. Brian K. Johnson P.E., University of Idaho Brian K. Johnson received his Ph.D. in
Paper ID #37537An Upper-level Undergraduate Course in Renewable Energy with PowerElectronics and SimulinkDr. Harry O Aintablian, University of Washington Harry Aintablian is an Associate Teaching Professor of Electrical Engineering at The University of Wash- ington at Bothell. He received his Ph.D.in Electrical and Computer Engineering from Ohio University. His research interests include power electronics and renewable energy systems. He worked for several years in aerospace power electronics/power systems at Jet Propulsion Laboratory and at Boeing Space Systems. ©American Society for Engineering
, Qatar Dr. Al-Hamidi holds a Ph. D. degree in Mechatronics from the University of Bourgogne Franche-Comt´ e (UBFC), France, and currently working as the Mechanical Engineering Laboratories Manager at Texas A&M University at Qatar. He joined Texas A&M University at Qatar in 2007 coming from University of Sharjah. Dr. Al-Hamidi had been appointed as a visiting lecturer in 2018 to teach design related courses in the mechanical engineering program. He specializes in product design, instrumentation, controls, and automation. Dr. Al-Hamidi founded the Engineering Enrichment Program in 2016, which is currently one of the Center for Teaching and Learning pillars. He received three Transformative Engineering
an affiliate Associate Professor in Engineering Education at Virginia Tech. He is active in engineering within K-12, serving on the Technology Student Association and Solid Rock International Boards of Directors, and has recently co-authored a high school text, ”Introduction to Engi- neering”.Dr. Stephen J. Spicklemire, University of Indianapolis Has been teaching physics at UIndy for more than 35 years. From the implementation of ”flipped” physics class to the modernization of scientific computing and laboratory instrumentation courses, Steve has brought the strengths of his background in physics, engineering and computer science into the classroom. Steve also does IT and engineering consulting.Dr. Joseph B
Paper ID #39458Board 15: Work in Progress: Cultivating Growth of Systems Thinking Habitof Mind over a Five Course Fundamental SequenceDr. Lisa Weeks, University of Maine Lisa Weeks is a lecturer of Biomedical Enginering in the Department of Chemical and Biomedical En- gineering at the University of Maine since 2017. She teaches several of the core fundamental courses including hands on laboratory courses.Prof. Karissa B Tilbury ©American Society for Engineering Education, 2023 Work in Progress: Cultivating Growth of Systems Thinking Habits of Mind over a Five Course Fundamental
Paper ID #37608Process Control Experiment Using an Arduino Board and LED LightsDr. Maddalena Fanelli, Michigan State University Dr. Maddalena Fanelli is a Teaching Specialist in the Department of Chemical Engineering and Materials Science at Michigan State University. Dr. Fanelli teaches and coordinates a number of undergraduate courses and laboratories, helping students learn chemical engineering fundamentals and gain hands-on experience.Mr. Ryan Daniel Atkinson, Michigan State University Mr. Ryan Atkinson is an undergraduate student studying Electrical Engineering. Currently, Ryan is working as a professorial assistant
Paper ID #38072The Impact of Short Mindfulness Practices on Student Attention and Focusin Upper-Level Civil Engineering Design ClassDr. Priyantha Wijesinghe, University of Vermont Priyantha Wijesinghe is a Senior Lecturer in Civil and Environmental Engineering and Director of Curric- ular Enrichment for the College of Engineering and Mathematical Sciences (CEMS) at the University of Vermont (UVM). Priyantha is a structural engineer and architect by education and is an engineering edu- cation and assessment expert. As the Director of curricular enrichment, she has organized and facilitated numerous teaching and assessment
Paper ID #39370Implementing an Effective ABET Assessment Program for a New BachelorofScience in Engineering Technology DegreeDr. Qudsia Tahmina, The Ohio State University at Marion Dr. Qudsia Tahmina, The Ohio State University at Marion Dr. Qudsia Tahmina is an Assistant Professor of Practice in the Department of Electrical and Computer Engineering at The Ohio State University. She received her Ph.D. in Electrical Engineering from the University of Wisconsin-Milwaukee. She teaches first- and second-year courses at the Marion campus. She has developed an interest in engineering education, teaching pedagogies and strategies
Paper ID #38923Board 72: How to Develop Engineering Students as Design Thinkers: ASystematic Review of Design Thinking Implementations in EngineeringEducationMiss Yuwei Deng, King’s College London I am a first-year Ph.D. student in the School of Engineering at King’s College London. My research interests are designing and implementing convergent design thinking for engineering higher education.Dr. Wei Liu, King’s College London Dr Wei Liu is Senior Lecturer (Associate Professor) at King’s College London with extensive teaching and research experience across design, engineering and management. Wei accomplished her PhD at the
ethics.This program began with College-wide, dean’s level administration and support. Thecommunication lab and consultations space was centrally located in the main College ofEngineering building. It was in this space that the director, administrative assistant, and graduateteaching fellows also occupied office space. PhD students from the College of Humanities withinterests in instructional communication, writing/composition, and communication across thecurriculum served as strong ambassadors for the importance of disciplinary expertise. In additionto classroom instruction, communication laboratories, and student consultations, the programdirector and graduate teaching fellows offered monthly workshops targeting engineering facultyon topics related
degrees on time [15], [16]. Future work will studystudents’ on-time graduation and degree completion, as well as the factors contributing to theseparamount problems in the academic community.Conclusions and RecommendationsSeveral academic as well as non-academic factors hinder minority students’ interest, persistence,and success. These factors include poor-quality teaching and advising, a challenging curriculum,deficiencies in mathematics, uninspiring courses, lack of sense of belonging, a lack of interactionbetween students and faculty, financial difficulties, a lack of hands-on projects as well as theavailability of infrastructure and laboratory facilities [1]–[3], [8]–[11]. All of these factorsgreatly contribute to major change and dropout
Engineering at the University of Dayton. He received his B.Eng. in Chemical Engineering at UCA in El Salvador. He obtained his M.S. from Clemson University and his Ph.D. from Mississippi State University, both in Chemical Engineering. His laboratory research involves nanotechnology in chemical and biological pro- cesses. His educational research interests are community-based learning, open-ended laboratory experi- ments, teamwork, collaborative and active learning, and Transport Phenomena computational modeling.Dr. Homero Murzi, Virginia Polytechnic Institute and State University Dr. Homero Murzi (he/´el/his) is an Associate Professor in the Department of Engineering Education at Virginia Tech. Homero is the leader of the
Photonics ManufacturingEducation,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol.65(1), pp. 1464-1465, 2021; doi: 10.1177/1071181321651251[19] S. Serna, N. Hidalgo, J. Tjan, K. McComber, L.C. Kimerling, E. Verlage, J. Diop, J. Hu, S.Saini, A. Agarwal, G. Gagnon, S. Preble, G. Howland, M. van Niekerk, J. Steidle, K. Mcnulty, J.Cardenas, M. Song, M. Popović, A. Khilo, P. Nagarkar, F. Vazehgoo, I. Moskowitz, G. Gu, C.Schnitzer, E. Deveney, T. Kling, D. Petkie, and J. Longacre, “A modular laboratory curriculumfor teaching integrated photonics to students with diverse backgrounds,” Fifteenth Conference onEducation and Training in Optics and Photonics: ETOP 2019, Québec City, P.Q., Canada, May21-24, 2019, ETOP 2019 Papers
of Connecticut conducted a PBSL experience where approximately 400first-year engineering students designed and built Corsi-Rosenthal (C-R) boxes (DIY AirPurifiers) that trap 56-91 % of respiratory aerosols and improve indoor air quality. The C-Rboxes were built for a nominal cost of $60 per box, using a 20” box fan, four 20”x20”x2”MERV-13 filters, the box from the fan, and duct tape. The project was carried out by smallgroups (3-4 students) working in the First-Year Design Laboratory over four weeks. At the endof the project, the C-R boxes were distributed to the local elementary schools. During the pandemic, these first-year engineering students had completed their final yearin high school remotely, under lockdown. Thus, this C-R box
Paper ID #37594IMPACT OF OPEN EDUCATIONAL RESOURCE ON IMPROVING LEARN-ING PERFORMANCE OFSTUDENTSDr. Atefe Makhmalbaf, The University of Texas at Arlington Dr. Atefe Makhmalbaf is an assistant professor at the UTA School of Architecture. She worked for Pacific Northwest National Laboratory (PNNL) as a research engineer and joined UTA after receiving a Ph.D. from Georgia Institute of Technology in Building Science. Dr. Makhmalbaf leads a Building Performance Analytics group at UTA. She develops decision support systems to enhance sustainable built environment. Since joining UTA, she has developed and taught several
Engineering Department of Covenant University since February, 2013. In addition to being a registered engineer (COREN R68878), he is also a member of the Nigerian Society of Engineers, NSE (33597) as well as the Society of Petroleum Engineers, SPE (3495171). In teaching petroleum engineering course modules, Dr. Mosobalaje adopts a balanced blend of analogical reasoning, concept visualization, field application and workflow coding as a pedagogy style. His recent enrolment in and completion of dozens of online courses (MOOC), delivered by world-class universities, has broaden his view of state-of-the-art teaching methods. As a testimonial of his pursuit of excellence in teaching, he recently received an award as the best
Paper ID #40631Full Paper: Introducing Machine Learning to First Year EngineeringStudentsJoshua Eron Stone, University of Maryland - A. James Clark School of Engineering - Keystone Program Laboratory Teaching Assistant for the University of Maryland’s flagship introduction to engineering course, and undergraduate Computer Engineering student.Mr. Forrest Milner Undergraduate Engineering Student at the University of Maryland, College Park. A. James Clark School of Engineering. Interested in projects relating to electronics and batteries, which you can check out on my website, forrestfire0.github.io.Sophie Roberts-Weigert
barriers to conducting engineeringeducation research. We also hope to shed light on specific barriers that academic collaborationsshould be aware of, and ways academia can support industry in conducting engineeringeducation research.Key words: industry involvement, research-to-practice, educational technologyIntroductionSome engineering companies develop products that are used by academia in two ways. In thefirst case, the company’s core product might be an industry tool that is taught to students in orderto build their skills for future engineering careers. In these instances, the company may havetheir own educational division dedicated to providing students and instructors with resources forlearning with or teaching how to use the products. For
Paper ID #39880GIFTS: Introducing Agile Process and Product Development in an FYE CourseDr. Karen C. Davis, Miami University Karen C. Davis is a Professor in the Department of Computer Science and Software Engineering at Mi- ami University. Her research interests include database design, query processing and optimization, data warehousing, and computing education. ©American Society for Engineering Education, 2023 GIFTS: Introducing Agile Process and Product Development in a FYE CourseAbstract: Great Ideas for Teaching Students (GIFTS): This paper describes two
ConferenceCSWA pass/fail data was collected starting in the Fall 2015 semester. Data was included from thetwo course sections on the main campus in Starkville, MS and the one section on the satelliteMSU engineering campus in Gautier, MS. Data was not available from the Fall 2018 and Spring2019 Semesters. A request was made for this data and will be included in future studies ifavailable. Multiple instructors conducted the course during the time of analysis, but thecurriculum and teaching methods were consistent between semesters and instructors.Additionally, semesters after Fall 2019 were not included in this study due to the number ofcontinuing students and pandemic anomalies. Students were mapped using a unique studentidentifier to the list of degrees
implementations through the Massachusetts Health Information Exchange. At Wentworth, Dr. Feldman is focused on project-based instruction, hands-on simulations, experiential learning approaches, and first year curriculum. Dr. Feldman is one of the lead instructors for Introduction to Engineering courses, with enrollments in the hundreds each fall. His re- search and teaching interests, in addition to first year engineering, include telemedicine, health informat- ics, rehabilitation engineering, and medical robotics. Dr. Feldman has collaborated with researchers and engineers from organizations including Tufts School of Veterinary Medicine, Boston Children’s Hospital, Vecnacares, and Restoreskills.Dr. George D. Ricco, University
Paper ID #38901Student-led program to improve equity in Ph.D. oral qualifying examsMeredith Leigh Hooper, California Institute of Technology This author was an equal first author contributor to this work. Meredith Hooper is an Aeronautics PhD student studying under Professor Mory Gharib in the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT). Meredith is a National Science Foundation Graduate Research Fellow, leader within the GALCIT Graduate Student Council, and Co-Director of the Caltech Project for Effective Teaching (CPET). Her PhD research uses a combination of machine learning and