aligns with the targeted age range, 11-18, i.e., middle and high school age, of our broadening education intervention. It is highly likely that these students either play or played Minecraft games. They may either be interested in Minecraft or have fond memories of it. Their positive experience with Minecraft could serve as a foundation for developing an interest in computer programming. 2) Minecraft allows us to create a virtual world that reflects reality: the identity of the players and the socio-cultural context. We want these students' identities to be represented to encourage engagement, particularly from underrepresented students. Minecraft allows us to create characters of different races, genders
is housed. The current study focused on efforts to recruit S-STEM scholarsover two recruitment cycles.To better understand current recruitment efforts, institutional partners and current S-STEMscholars responded to reflection prompts about their experience with recruitment. The sampleincluded all institutional partners and 13 out of 14 scholars. The authors analyzed the writtenreflections using thematic content analysis with most findings relating to (1) factors in awarenessand decision making, (2) reasons for applying, (3) hesitancies and potential barriers and (4)future opportunities and communication strategies. The study revealed that staff perspectivesregarding what worked for students did not necessarily align with student perspectives
autoethnography isto challenge the subject-object distinction by putting the researcher's perspective on thephenomenon being researched. The auto-ethnographic framework also allows for analysis of thevaried interactions between factors that have influenced her interest in engineering. Additionally,a qualitative technique with an auto-ethnographic framework allows the researcher to lookdeeply into the participant's experiences, motives, and reflections. Auto-ethnography is a suitableapproach to self-reflect, bringing valuable personal views into her experience. In support of thisapproach, she relates her experience actively engaging in hands-on experiments, problem-solving, and collaborative projects. These experiences contributed significantly to her
provided. It involves critically examining the arguments presented andthe methods used to support the assertions or conclusions offered [18,24]. Explanationencompasses the ability to clearly communicate and articulate thoughts, ideas, and argumentsin a way that is coherent and understandable to others. This includes the ability to providereasons and evidence to support claims made [25]. Self-regulation in critical thinking includesthe ability to critically reflect on one's own thinking and assess its logic, coherence, biases, orweaknesses. It implies being aware of personal limitations and prejudices and being open toreconsider or modify one's own beliefs or points of view based on new evidence orarguments [26,27] . For critical thinking a
). Comprehending and acknowledging the subtletiesof student effort is essential for educators, researchers, and institutions seeking to elevate theoverall quality of the educational experience. At its core, student effort involves the commitment and diligence demonstrated bystudents in their academic endeavors (Shu, 2022). This commitment manifests in various forms,including time spent on studying, engagement in coursework, active participation in classdiscussions, and the pursuit of additional learning opportunities (Khachikian et al., 2011; Shu,2022). The quantitative dimension of student effort is often reflected in the number of hoursdedicated to academic tasks, the thoroughness of preparation, and the consistency of work habits(Berland &
thesurvey results is beyond the scope of this paper, the three groups of stakeholders agreed (>70%in each group) that a range of technical subject matter is important for all engineers, regardless offield. These included single variable calculus, differential equations, probability and statistics,general purpose computing and programming, the engineering design process, modeling(including prototyping), and project management. The three stakeholder groups also agreed thata number of professional proficiencies are important for all engineers, including communication(oral, written, graphical), codes of ethics and identification, working with people of diverse anddifferent backgrounds, reflection, feedback, and career skills, among others. These
conclusions or recommendations expressed in this material are those of the author(s) and donot necessarily reflect the views of the National Science Foundation. 1Fisher identified significant gender differences in major selection for male- and female-identifiedstudents in computing based on individuals’ attention to “computing with a purpose” [9].However, it is important that we recall Slaton’s cautions against the operation of essentialismwithin this approach to diversity and inclusion and not predicate calls for change on a “naturaldifference” in approaches to engineering, rather we call for a change in values for liberation [10].Our department is at the beginning of a multi-year journey of
,formative assessment approaches aim to develop talent, which is more likely to reduce barriers facedby female engineering students as well as those students in underrepresented groups in STEM fields.These methods encourage reflection, which enhances learning, and they increase the intrinsicmotivation to learn, which teaches skills and creates enthusiasm for life-long learning. This is thegoal of education. Engineering education reimagined to allow a cycle of try, fail, study, try again,and learn, based on a growth mindset, is progress toward providing true quality education. It alsolevels the playing field, increasing the possibility of success for women in engineering, and reducingbarriers often encountered by students of color, indigenous
implement change in boththe media industries and their products. 6 GENDER AND COMPUTER GAMES • Women make up about half of video game players • Significantly underrepresented as protagonists in video games • Portrayal of women in games often reflects: • traditional gender roles • sexual objectification • stereotypical female tropesWhile women play video games on par with men, they are not represented as protagonistsat similar levels.Instead, when women are portrayed in games, they are placed into secondary and/orobjectified roles, and often presented in a stereotypical fashion.Data Sources
engineering students through community building (Evaluation) AbstractOver the past twelve years, the ESTEEM program, funded by the NSF S-STEM, at University ofCalifornia Santa Barbara (UCSB) has supported 161 low-income undergraduate students inengineering. This paper emphasizes the students’ changing needs and what they foundsupportive over time with a special focus on the shifting needs for community building before,during, and after COVID-19 pandemic remote learning. Without additional support, low-incomeengineering students, who often reflect additional intersecting minoritized identities and are morelikely to be the first in their family to attend college, leave the field at
their needs.BackgroundThere is a long history of engagement of academics with communities [1-4]. Historically someof this work was termed service-learning (SL) where the goal was for students to reapeducational benefits from credit-bearing activities through a process of reflecting on their work,while community partners also benefited from the collaboration. SL work often faced challengeswith equitable benefits and power sharing. SL in engineering is now often being framed underthe larger umbrella of community engagement (CE). CE is a broader idea that encompassescommunity partnerships in co-curricular activities (such as Engineers Without Borders studentchapters). CE work can also be focused on scholarship and research, termed CommunityEngaged
individual’s innate desire to perform a task for its own sake,based often on needs for competence or self-determination [11], [12]. Conversely, extrinsicmotivation reflects factors external to an individual, often rewards or a desired outcome [11].Expectancy-value theory posits that competence beliefs and task value beliefs factor into anindividual’s choice to engage in actions [13], [14]. Specifically, we draw on Matusovich et al.’soperationalization of the subjective task value that students use to make decisions about whetherto persist in engineering: attainment, cost, interest, and utility [6], [14]. Attainment valueindicates that a student pursues (or does not pursue) engineering because of a reason related to“being the type of person who is an
promote youth’s understanding andengagement in environmental sustainability, social justice, and decision-making in an AI-enabledfuture. However, the traditional approach to defining engineering that has guided engineeringpractices is insufficient because it fails to embrace these realities. Therefore, the need for a newframework that reflects these realities is overwhelming. This paper introduces a new theoreticalframework called socially transformative engineering that not only captures these missingelements but also values and incorporates the diverse perspectives and experiences of students. Inparticular, this framework draws upon the legitimation code theory and justice-centeredpedagogies and builds on three tenets (reasoning fluency
emphasized in the traditionalcurriculum. Student reflection and exit survey data examined student learning experiences alongwith the challenges of implementing skills they have learned. Students described the benefits oflearning an effective socially engaged design process to plan their projects, engaging withstakeholders to gather important information regarding their needs, learning recommendedpractices in idea generation, and creating prototypes before coding. On the other hand, studentsdescribed perceived challenges including lacking experience in socially engaged design skillsthat may impact their ability to implement skills from the workshops effectively, identifying andconnecting with stakeholders who could provide meaningful information, and
-contextualize engineering science engineering courses to better reflect and prepare students for the reality of ill-defined, sociotechnical engineering practice. Their current projects include studying and designing classroom interventions around macroethical issues in aerospace engineering and the productive beginnings of engineering judgment as students create and use mathematical models. Aaron holds a B.S. in Aerospace Engineering from U-M, and a Ph.D. in Aeronautics and Astronautics from the Massachusetts Institute of Technology. Prior to re-joining U-M, he was an instructor in Aerospace Engineering Sciences at the University of Colorado Boulder.Prof. Rachel Vitali, The University of Iowa Dr. Rachel Vitali is an
Science (B.S.) program requires a one-semester capstone design course. In thesame department, the Master of Engineering (M.Eng.) program curriculum also requires aproject management capstone style course. This requirement is among several differences whichseparates the M.Eng. program, which focuses on preparation for industry, from a Master ofScience (M.S.) which typically reflect more academic and research focus. Recently, UIUCcombined the capstone program for undergraduates and the M.Eng. capstone program into ajointly offered course. The details of the merger can be found in an earlier article [11].There are several key benefits to combining the two programs intended to enhance theexperience for students and instructors. One benefit of a joint
unaware of the discipline of engineering education.As an effort to raise more awareness on the impact of engineering education research andpractice, the authors’ positionality stemmed from their reflections of their entry points into thefield of engineering education. This introspection prompted the authors to explore and share asmuch information about the discipline as was available at the time of this work.Research Approach & DesignThis exploratory study thoroughly investigated the current state of engineering education as adiscipline in the U.S. via an online content analysis of institutional or departmental websites tofind information about the faculty members working in the respective institutions. The sectionsand pages of ‘Faculty
students they serve; They developleadership skills, learn about counseling and educational theories, and reflect on their valuableexperiences [3], [7].Learning objectives for the course include: • Articulate different definitions and related sub-themes that could comprise peer advising, peer mentoring, interpersonal communication, and leadership soft skills. • Evaluate the current level of development in soft skills and develop a plan for future reflection, evaluation, and adjustment to said skills. • Demonstrate effectiveness in your role and build confidence in providing advising assistance. • Demonstrate familiarity with resources and opportunities in the College of Engineering and the greater campus and
casestudies are taught as situative learning experiences, and consider professional practice throughanalysis of an engineering standard/regulation. During a situative learning experience, learningoccurs through a collaborative activity, with knowledge presented within an authentic context [2,3]. Second, Keenan’s Model of Conscience Formation provides students with a framework forevaluating inequities in each case study. Finally, the social justice case studies facilitate criticalconsciousness regarding engineering practices. This provides students an opportunity to reflect onthe inequity perpetuated through engineering irresponsibility and take critical action to identifyunethical practices and articulate a socially responsible engineering approach
soft skillsnecessary to tackle real-world challenges, thereby playing a crucial role in societal innovationand technological advancement. Central to this educational journey is the capstone designproject, an essential component of the final year curriculum that not only serves as a significantmilestone for aspiring engineers but also acts as a vital bridge between academic learning andpractical application.Capstone projects challenge students to synthesize and apply their comprehensive knowledgethrough hands-on projects within a team-based environment, mirroring professional engineeringpractices. These projects are intended to prepare students for the complexities of real-worldengineering tasks and reflect the dynamics of professional practice
scientific phenomena [28-29]. The effectiveness of writing-based interventions to learn domain specific content hasbeen documented across scientific fields including, but not limited to: biology, chemistry,ecology, and physics [29-37]. These and other studies have shown that writing-based STEMinterventions can improve students’ reasoning and conceptual understanding [33, 38-41] and thatwriting becomes even more effective when it includes formative feedback and reflection (p. 84,[42]). For example, a meta-analysis by Bangert-Drowns et al. [43] across 47 studies consideredthe effects of writing-to-learn with feedback compared to writing with no feedback. Feedbackwas more effective than no feedback for academic achievement, with an effect size
into STEMfields through the cultivation of their mentor support networks. Rising Scholars students wereprovided with a scholarship and had a defined path of activities in college designed to enhancetheir professional mentoring network. They were prearranged to participate in a pre-freshmanacademic bootcamp, an on-going faculty-directed research project, a self-directed researchproject, and an internship. Students attended seminars and produced written reflections of theirvarious individual experiences on the path to a professional career. Three cadres of 21 studentstotal, who had expressed a previous interest in engineering, were admitted to a general studiesprogram and provided intensive guidance and an active social group. The Rising
Paper ID #42944Unmasking Cognitive Engagement: A Systematized Literature Review of theRelationships Between Students’ Facial Expressions and Learning OutcomesMr. Talha Naqash, Utah State University, Logan Mr.Talha Naqash is currently pursuing his doctoral studies in Engineering Education at Utah State University. With a profound educational background spanning multiple disciplines, he holds an MS in Telecommunication and networking. His extensive research contributions are reflected in numerous publications and presentations at prestigious IEEE; ASEE conferences, Wiley’s & Springer Journals. His research primarily
process, and the inherent value derived from the study’s outcomes. Themes thatemerged and were defined from discussion exercises with participants are the following: ’lost andfound,’ signifying moments of uncertainty and discovery; ’lack of community,’ highlightingfeelings of isolation; ’not surface level,’ underscoring the depth and complexity of the issuesdiscussed; and ’community,’ reflecting participants’ desire for, or efforts toward, building a senseof belonging within the research program. These themes serve as integral components of ourinvestigation into the impact of photovoice on understanding the perspectives of underrepresentedgroups in computing.Keywords: Photovoice, computer science, underrepresentation, student perception1
discrimination manifests inuniversities and include the institution’s own data. We highlight adaptations we made specificto our institution in order to encourage other institutions to be responsive to the contexts thatimpact DEIS work on their campuses. For instance, our initial adaptation of the Advocates andAllies program sought to be more inclusive by including LGBTQIA+ and staff on the Advocatesteam and A&A Advisory Board (A3B). Our adaptations have also reflected an ongoingcommitment to present race and ethnicity data in addition to gender data1. Other adaptationswe discuss concern developing the credibility of the team presenting the workshops andincorporating an ongoing Journal Club to discuss the relevant literature.This paper also shares
set ofsix-piece chicken nuggets they can produce within 15-minutes. The points serve as a metric forthe overall productivity of the country and world during the game. The game is played twicewithin a 65-minute class session. The first game does not have any tariffs imposed and thusrepresents a liberalized trade environment. The game is then run a second time under a scenarioin which one country has invaded another country and in response multiple countries haveimposed import tariffs on each other. Students also spend five-minutes reflecting on what theylearned about international trade. While the specific results change each time new student teamsplay the game, the general results that a) there are winners and losers from tariffs and b
projects, reflect on their social identities, and consider the broader societal contexts of their engineering work. The goals of his research are 1) to develop tools and pedagogies that support engineers in achieving the positive societal changes that they envision and 2) to address systems of oppression that exist within and are reproduced by engineering education and work environments. He earned his B.S. in Engineering Sciences from Yale University, with a double major in East Asian Studies, and earned his Ph.D. in Mechanical Engineering from the University of Michigan. He also holds a Graduate Certificate in Chinese and American Studies, jointly awarded by Johns Hopkins University and Nanjing University in China.Prof
proven to nurture learning via practical projects,promoting collaboration, communication, safety consciousness, and critical thinking. Guidelinesof the Accreditation Board for Engineering and Technology (ABET) and the High-QualityProblem-Based Learning Organization (HQPBL), which include, but are not limited to:“Intellectual Challenges and Accomplishments”, “Authenticity”, “Public Product”,“Collaboration”, “Project Management”, and “Reflection” are followed. For this manuscript, ourprimary focus lies on “Authenticity”, which emphasizes the significance of PBL projects thatgenerate tangible benefits for individuals and communities beyond the educational environmentsof classroom and school. Our objective is to fulfill all necessary ABET criteria
reflection on how the coding functions and process students are learning relateto their future careers.Lab time during each project was used to introduce students to the relevant coding functions they neededto complete each project and as work time where groups could meet to work on their projects. In the firsttwo weeks of each project, the instructor provided a template Jupyter Notebook with a similar dataset tothe project and demonstrated how to code specific sequences needed to complete the project for about onehour of the lab. The second hour of lab was reserved as time for students to try to apply the concepts totheir project datasets with their groups and the instructors and teaching assistants were available to debugand answer questions. For
at the Civil andEnvironmental Engineering and Construction Management Department at a University in theUnited States. The study was a four-week assignment integrated into two senior-level courses: 1.the capstone project course in two semesters, 2. the pre-construction management course in onesemester. This study uses participatory action research (PAR) as a data collection instrument.PAR is a qualitative approach in which researchers work collaboratively with the participantsubject population to collect data, reflect and take action. Photovoice, commonly linked to PAR,is used to collect and explore qualitative data, give a unique depth of understanding to theresearch questions identified, and offer new insights and perspectives toward