Mechanical Engineering from Cornell. Prior to his academic career, he worked in the biotech (Lead Engineer), product design, and automotive (Toyota) sectors for 14 years, and is a licensed Professional Engineer. He has also taught high school and attended seminary. You can find more of his engineering education work at educadia.org or on his YouTube channel.Emma Annand, Montana State University Emma Annand is striving for a B.S. in Industrial and Management System Engineering at Montana State University – Bozeman. Emma is a research assistant for MSU’s NSF supported engineering leadership identity development project. She is also the fundraising team lead for MSU’s chapter of Engineers With- out Borders (EWB@MSU
, Merced in 2018. As a postdoctoral researcher at Purdue University, School of Engineering Education, Soheil is working on a multi-institutional project characterizing governance processes related to change in engineering education, and pursuing other research interests in epistemology and design, among other philosophical topics in engineering education.Dr. Atsushi Akera, Rensselaer Polytechnic Institute Atsushi Akera is Associate Professor and Graduate Program Director in the Department of Science and Technology Studies at Rensselaer Polytechnic Institute (Troy, NY). He received his M.A. and Ph.D. in the History and Sociology of Science, University of Pennsylvania. His current research is on the history of engineering
, and Technology (ICAT). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, interdisciplinary pedagogy for pervasive computing design; writing across the curriculum in Statics courses; as well as a CAREER award to explore the use of e-portfolios to promote professional identity and reflective practice.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com
dataset for this paper comes from the MOOCKnowledge project data collection,which provides an opportunity to work with real-world data from hundreds of people. K-Means and SOM algorithms are performed with a subset of participants' features as inputdata. The clustering evaluation, meanwhile, is achieved with a selection of indices, an intra-cluster measure and an overall quality criterion for K-Means, and two measures related totopological ordering for SOM.The comparison of internal structure of both clustering (set of profiles) shows that there aresimilarities between them on the one hand and some pinpointed differences that can not beevaluated in advance without the opinion of an expert familiarized with the specifications ofthe MOOC on the
program.Prof. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and
but not solarge as to invalidate the tools. Steps should be considered to educate students about potentialbias.IntroductionTeamwork is an integral part of Engineering and Engineering Education.1 Well-designed groupand team projects can help students gain valuable teaming skills, and accrediting bodies requirethese skills of engineering graduates.2,3 But teamwork is not without its problems. Social loafingand “I better do it myself, if I want an A” syndrome are part of many peoples experiences withgroup and teamwork.4 A well-designed peer evaluation process can improve the studentexperience and lead to more powerful learning outcomes.Peer evaluation can be used to foster a better team experience and to equitably recognizeindividual student’s
Paper ID #12684General Engineering Plus: Creating Community in a Flexible yet TechnicalEngineering DegreeDr. Malinda S. Zarske, University of Colorado, Boulder Malinda Zarske is the Engineering Master Teacher for the General Engineering Plus program at the Uni- versity of Colorado Boulder. A former high school and middle school science and math teacher, she has advanced degrees in teaching secondary science from the Johns Hopkins University and in civil engi- neering from CU-Boulder. Dr. Zarske teaches engineering design in First-Year Engineering Projects and Engineering Projects for the Community, a sophomore-level course
interest in socio-scientific issues, and how they saw the role ofethical reasoning in their future profession as an engineer.Brief field notes taken after each interview helped in the preliminary data selection. Two of theinterviewed students, Tom (a junior-year engineering major) and Matt (a junior-year computerscience major), talked about weaponized drones as part of their interview. They had writtenabout this topic in their sophomore year as part of a capstone research project in the STSprogram. Besides the thematic congruence, another thing that caught our attention was that bothstudents regarded drone warfare to have negative consequences but, to different degrees, wantedto absolve the designing engineers of bearing responsibility.One of us
and the necessity of scaffolding forsupporting collaborative learning. Page 26.901.2 In STEM field, Soundarajan proposed the Peer Instruction for online collaborativelearning, in which students were assigned different roles in different tasks7. Bohorquez andToft-Nielsen integrated collaborative learning in specific course instruction and revealed theeffectiveness of problem-oriented method and collaborative learning in biomedical engineeringeducation8. Dong and Guo developed and adopted the Collaborative Project-based LearningModel to promote students’ collaborative learning in computer-networking curriculum, andclaimed the improvement in
physical projects (manually made or 3-D printed) simulating an ancient device of their choice.Results from student and peer evaluations are consistently favorable.I. Introduction How many people know that the first 3-D image in the history of humankind was created34,000 years ago by a ‘paleoengineer’ on the rock ceiling of a cave in Italy? How many of usknow that about 12,000 years ago, hafted tools contributed to the discovery of farming on amajor scale, allowing ancient ‘agricultural engineers’ to invent more effective farming tools?What about 10,000 years ago, when Mesolithic ‘mechanical engineers’ were able to createhypermicroliths (extremely small stone tools) with skills comparable to present-day diamondcutters, except without a
the first African American to earn promotion and win tenure in the Vanderbilt University School of Engineering. Currently, he serves as Associate Chair of the EECS De- partment. He also serves as the Director of Undergraduate Studies for both electrical engineering and computer engineering. Dr. Robinson leads the Security And Fault Tolerance (SAF-T) Research Group at Vanderbilt University, whose mission is to conduct transformational research that addresses the reliability and security of computing systems. Dr. Robinson’s major honors include selection for a National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program Award and the Defense Advanced Research Projects Agency (DARPA
unexplored3,4,5. This paper addresses this literature gap and aims to broaden theconceptualization of engineering identity by studying the development of engineering identity ofLatina/o undergraduates from their perspective and experiences. The forecasted growth of Latinas/os in the United States has encouraged a range ofinstitutions to assess how this shift in population will affect various programs of study especiallythose in science, technology, engineering, and mathematics (STEM) where Latinas/os arecurrently underrepresented. In engineering, the number of Latina/o students enrolling hasincreased since the 1990s and it is projected to continue to increase, though not at the same rateas the Latina/o population growth. Engineering is one
production and retention of Science, Technology, Engineering and Mathematics (STEM) talent is currently a major threat to the country2. In fact, to address heightened concern regarding the United States’ global position, several national efforts have been implemented to increase the number and diversity of students pursuing degrees and entering STEM careers. In 2012, the President’s Council of Advisors on Science and Technology announced that by 2022, the country would need 1 million more STEM professionals than projected to be produced18. One critical asset to reaching this capacity lies in the cultivation of competent, adaptable engineers prepared
Page 26.1273.3 (2)A graphical depiction of the projectile trajectory with the geometric configuration of the velocityvector v and the local path angle at a representative instant in time is provided in Fig. 1. Theelapsed time of the projectile motion, as measured from the projection instant, is denoted by t .A free-body diagram indicating the forces acting on the projectile is also displayed in Fig. 1.Next, it is useful to introduce the tangential and normal basis vectors T and N , respectively: v v T ; T( ) cos i sin j
CoursesAn important component of the PS course, whether part of a LC or not, is a group project inwhich students create a story that they later implement as a video game prototype using Alice,developing their computer programming concepts and skills along the way. We believe that oneof the reasons why students perform better in sections of the PS course linked to a LC is becausethe narrative skills learned in the EG1 course allows them to create more engaging stories whichthey then implement as a computer program using Alice. Students taking a PS course not linkedto a LC may not be taking EG1 in the same semester, they may have forgotten about thenarrative and writing skills learned in EG1, or the EG1 instructor teaching the course may notemphasize
added benefit of borrowing demosfrom different research labs is that the high school students are exposed to the breadth oftechnologies that are being developed across the country. Additionally, some manufacturers andfaculty have donated materials to be consumed during the hands-on activity. An added advantageof using faculty donated materials is that it stimulates investment in the project, whichencourages faculty and their graduate students to invest time volunteering to support theworkshop.Volunteer support is recruited through several different approaches. Six to ten graduate studentvolunteers are required to lead various activities throughout the workshop. Several monthsbefore the conference, conference organizers suggest individual
engineering programs, math education, K-12 STEM curriculum and accreditation, and retention and recruitment of STEM ma- jors. c American Society for Engineering Education, 2016 Longitudinal Success of Calculus I ReformAbstractThis paper describes the second year of an ongoing project to transform calculus instruction atBoise State University. Over the past several years, Calculus I has undergone a completeoverhaul that has involved a movement from a collection of independent, uncoordinated,personalized, lecture-based sections, into a single coherent multi-section course with an active-learning pedagogical approach. The overhaul also significantly impacted the course content andlearning
case study to measure the learning outcomes of engineering students in the new Bachelor’s of Science degree at UTEP, Engineering Education & Leadership.Mr. Leonardo Orea-Amador, University of Texas - El Paso Leonardo is a research student dedicated to design, engineering, and entrepreneurship. He is an investi- gator for the Empathic Design Studio at the University of Texas at El Paso (UTEP) since August 2015. Leonardo is working to obtain his master’s degree in Systems Engineering at the University of Texas at El Paso where he also obtained his bachelors of science in Mechanical Engineering. In 2014 he and his team were awarded first place with project, ProductivityPod, at the Paso del Norte Venture
specific and complex challenges.8,10Inductive teaching methods truly cover a large variety of instructional methods, from inquirylearning, problem-based learning, and project based learning. Often, these methods are deemed“student centered”, as the mastery of the concepts falls on the students to understand theimportance of the material from the problems or projects.11 Overall, inductive teaching styleshave more student benefits than deductive teaching methods. Inductive teaching methods offermore combinations to reach the learning style needs of the classroom and engage students moreactively in the subject matter.Student Perceptions in the ClassroomSatisfaction, self-efficacy, motivation, and classroom environment are the main factors in
Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics and Control Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a GK-12 Fellows project, and a DR K-12 research project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and control system technology. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations, he has con- ducted significant K-12 education, training, mentoring, and outreach
implementation project, the stress was building within the group, and the quality of our work was beginning to suffer. You noticed that we were not doing our best work and challenged us to rethink our approach. You reminded us of what we were capable of doing if we worked more together and this caused all of us to pause. No one else would have thought to intervene like you did and it made a real difference. In the end, we were all very proud of what we accomplished together and you played a big part in us getting there.The originators of the RBS exercise recommend that students receive stories from at least 10respondents and in my experience, most students
Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical Humanitarian Opportunities of Service-Learning) for approximately ten years. She has incorporated service-learning projects into her classes and laboratories since she started teaching in 2000. Her research interests include community engaged learning and pedagogy, K-12 outreach, biomaterials and materials testing and analysis. c American Society for Engineering Education, 2018
Paper ID #23055Understanding the Investment of Underrepresented Minorities in DoctoralEngineering ProgramsMs. Mayra S. Artiles , Virginia Tech Mayra S. Artiles is a Ph.D. Candidate in Engineering Education at Virginia Tech. She has a B.S. in Mechanical Engineering from the University of Puerto Rico at Mayaguez and an M.S. in Mechanical Engineering from Purdue University with a focus on nanotechnology. Before her joining the Ph.D. pro- gram, she worked at Ford Motor Company as an Electrified Vehicles Thermal Engineer for four years. As a doctoral student, Mayra has collaborated in research projects on diversity in
Education at Clemson University, with a joint appointment in Bioengineering. Her research focuses on the interactions between student motivation and their learning experiences. Her projects involve the study of student perceptions, beliefs and attitudes towards becoming engineers and scientists, and their problem solving processes. Other projects in the Benson group include effects of student-centered active learning, self-regulated learning, and incorporat- ing engineering into secondary science and mathematics classrooms. Her education includes a B.S. in Bioengineering from the University of Vermont, and M.S. and Ph.D. in Bioengineering from Clemson University.Dr. Geoff Potvin, Florida International UniversityDr. Adam
University of Illinois Urbana-Champaign. His research interests include algorithmic fault-tolerant adaptive systems, software defined radio, multi-user cellular communication, electrically-small devices, and pedagogies of teaching and learning. An amateur beekeeper, he currently mentors a project for improving the plight of honeybees. He worked for TRW Space and Electronics Group from 1995 until 1997 and at the University of Illinois from 2002 to present. His research interests are in adaptive digital signal processing, digital communica- tions, and education pedagogy. He currently serves the ECE department of the University of Illinois as a Teaching Associate Professor and an undergraduate advisor and is working to
2017 North Carolina A & T State University (NCAT) Rookie Research Excellence Award. Under her mentorship, Dr. Ofori-Boadu’s students have presented research posters at various NCAT Undergraduate Research Symposia resulting in her receiving a 2017 Certificate of Recognition for Undergraduate Re- search Mentoring. In 2016, her publication was recognized by the Built Environment Project and Asset Management Journal as the 2016 Highly Commended Paper. Andrea has served as a reviewer for the National Science Foundation (NSF), Environmental Protection Agency (EPA), and several journals and conferences. In 2015, Dr. Ofori-Boadu established her STEAM ACTIVATED! program for middle-school girls. She also serves as the
. Researchers have noted the importance ofeffective ideation and demonstrated its influence on the success of the project (Nelson, Wilson,Rosen, & Yen, 2009).Second, we are interested in conceptual design phases because it is during this period that teamroles are formed and group norms are established (Butterfield & Pendegraft, 1996). Teaminteractions that are established early can set the tone for subsequent interactions and thereforedesign team effectiveness and success (Kolmos, Rump, Ingemarsson, Laloux, & Vinther, 2001;Liang & Lawrence, 2007; Roberts, 2012; Simmons, 2015; Yoon & Johnson, 2008). If ideationpractices can be developed to enhance both creative capacity and equitable interactions inengineering teams, understanding
. For faculty, the support for eachother and the sharing of the load makes things easier. For students, the academic interactions oncontent that they might not be familiar with initially stimulated questions and discussions, andultimately learning from brand new angles.One way to further deepen the collaboration is to do service-learning projects in the faculty-ledtrips, as our colleagues in health, education, etc. have done, with benefits stated in [18], althoughwe have not implemented any service-learning project yet, because our trips so far have been inmultiple cities without enough time at one place to finish a project. However, the incorporationof a service-learning project is expected to deepen the interdisciplinary collaboration
Paper ID #41461Board 33: Enhancing Self-Efficacy Among Transportation Engineering UndergraduatesUsing Hands-On Pedagogy.Mr. Adebayo Iyanuoluwa Olude, Morgan State University Adebayo Olude is a doctoral student and research assistant at Morgan State University’s Department of Civil Engineering in Baltimore, Maryland. Adebayo formerly worked as a Graduate Research Assistant at Eastern Mediterranean University in North Cyprus, where he earned his master’s degree in civil engineering. He also worked as a project Analyst with AgileP3 after graduating with a Bachelor of Engineering (B.Eng) in civil engineering from Covenant
Paper ID #41866Teaching Strategies that Incorporate Social Impacts in Technical Courses andEase Accreditation Metric CreationMs. Ingrid Scheel, Oregon State University Ingrid Scheel is a Project Instructor at Oregon State University in Electrical Engineering and Computer Science. She teaches Electrical and Computer Engineering fundamentals and design courses, and as a graduate student in Education is focused on curriculum design. Scheel’s industry experience includes prototype development, test article instrumentation, data acquisition, data analysis, and reporting. She contributes to the International Society for Optics