to solve small, specific problems. For example, one student wrote “I would ask it howto write specific syntax (make arrays that are all zeros, for loops syntax, math modifiers).”While the tool code captured the way students used ChatGPT for specific tasks during the codingprocess, 25% of student responses to the survey also described ChatGPT as a learning aidbeyond syntax or debugging code (code: tutor). These responses also often included elements ofpersonalized help or access to help outside of the available hours for other support tools(professor office hours, peer tutors, etc.). “...Having a tool to be able to help me when othersaren't available to help was amazing.” As detailed above, these responses included descriptionsof how students
approach to teaching engineering inother commonly taught K-12 disciplines [18-20]. Another common argument is that engineeringskills should now be considered for all students, much as reading, writing and mathematics [21,22], and this is sometimes positioned as an early recruitment tool, with the idea that studentsmust be recruited prior to losing interest in STEM.Figure 1. A synthesis of common high level motivations for, desired outcomes of, barriers to,strategies for, and measures of K-12 engineering education.This paper synthesizes literature on formal and informal engineering education in K-12 settings.Specifically, we focus on outcomes related to (1) developing interest and/or identities inengineering, including in (2) engineering careers
at Carnegie Mellon Uni- versity, Pittsburgh (2001 – 2003) and BHP Institute for Steel Processing and Products, Australia (1998 – 2001). Dr. Manohar held the position of Chief Materials Scientist at Modern Industries, Pittsburgh (2003 – 2004) and Assistant Manager (Metallurgy Group), Engineering Research Center, Telco, India (1985 – 1993). He has published over 55 papers in peer-reviewed journals and conferences including a 2007 Best Paper Award by the Manufacturing Division of American Society for Engineering Education (ASEE), three review papers and three book chapters. He has participated in numerous national and inter- national conferences. He is a member of ASM International, TMS, ACerS, AIST, ASEE, and a
technical presentations. The educational activities and technical presentation weredeveloped to cover several topics such as financial literacy, standardized testing, resume writing,and time management. Pre-college students also participated in individual mentoring sessions toallow for a one-on-one learning environment. Online surveys were formulated and distributed tothe participants at different stages of the STEM Education Workshop during the summer of 2020.The information collected was preliminarily analyzed to generate conclusions about the STEMEducation Workshop and draw recommendations to improve the material content, presentationmethods and communication technology for use in upcoming STEM Education Workshops.IntroductionSchools and
sustainable systems with over 60 peer-reviewed publications. Dr. Landis is dedicated to sustainability engineering education and outreach; she works with local high schools, after school pro- grams, local nonprofit organizations, and museums to integrate sustainability and engineering into K-12 and undergraduate curricula. Page 26.915.1 c American Society for Engineering Education, 2015 Improving engineering student persistence and diversity through conative understandingAbstractEngineering teaching strategies that engage students are desperately needed to recruit
and with what levels of effectiveness. For that research, we will seekadditional funding to study how teachers use and apply these materials. References1. S. E. Lopez, W. H. Goodridge, M. Tajvidi, K. H. Becker, Assessing the Need for Professional Development in Engineering Among Ru-ral High School Science Teachers (Fundamental) (2017).2. T. Porter, M. E. West, R. L. Kajfez, K. L. Malone, K. E. Irving, The effect of teacher professional development on implementing engineering in elementary schools. Journal of Pre-College Engineering Education Research (J-PEER) 9, 5 (2019).3. K. Eby, The Essential Guide to Writing S.M.A.R.T. Goals 2019 (2019).4. T. J. Moore, A. W. Glancy, K. M. Tank, J. A
reduces STEM self-concepts and lowerspersistence for Women, African American, and Hispanic/Latinx students [4], [12 – 16]. Inaddition, Lesbian, Gay, Bisexual, Transgender, Queer, Genderqueer, Asexual, Non-BinaryGender, as well as other traditionally oppressed gender and sexuality minority identities, faceadditional bias and discrimination in engineering spaces with complex intersections of genderand race/ethnicity mistreatment in both undergraduate and graduate education [17], [18].STEM broadly, and engineering specifically, lacks quantitative discrimination and bias measuresthat capture the unique spaces (e.g., labs, classes, offices) and experiences (e.g., research,conferences, advisor, peer relationships) of graduate students. Qualitative
proposal, while working in a research group with a faculty, and oftengraduate student, mentor; 2) Mentoring, which consists of a multi-tiered approach designed tosupport the students with trained peer mentors often former LEARN® participants assigned toeach student in the program, paired laboratory/faculty mentors, and a LEARN® programcoordinator; and 3) Community Building, which consists of living/learning opportunities, socialprogramming, and other non-research related extracurricular activities. It is hypothesized that theLEARN® program participants will:1. Demonstrate higher fall-to-fall retention, credits earned, GPA, and graduation rates compared to matched intra-institutional comparison groups;2. Demonstrate developmental gains in
since 2012, wejust recruited our fourth cohort.One crux of our current grant is to examine what happens when we take anintervention and adapt it to a different group. When we adapted WEBS to BRAINS, wedidn’t explicitly study the process of adaptation.Our program is also influenced by the peer mentoring summits for womenengineering faculty of color previously run by one member of our leadership team,Dr. Christine Grant. 4Scientific and professional skills are necessary but not sufficient to increase thepersistence of women in engineering and computer science. The theory underlyingour program developed as the model evolved, first through WEBS and now
. 5Each student is asked to write briefly in their journals on a weekly basis to document their learning and their challenges. These are read by staff who include comments and questions for students. Staff intervene if they think it is needed to improve the situation for the student. In most cases the students are advised to advocate for themselves—ask questions, for example.At the end of the semester of research, the student develops a presentation that shows what she has done during her research, what she has learned, how the research will be impactful if successful, and if this research opportunity has influenced her future plans.They get to make their presentation to an audience of their peers, theirs and others’ mentors and faculty
, faculty mentoring, extra-curricular activities, peer group support interactions, and research/work experiences.A pilot group of 92 students from ten different engineering programs and four different entrylevels, joined the project. At the end of the first year indicators shows encouraging preliminaryresults. 97.9% students in the study group performed above the college-wide average. Freshmensuccess indicators in terms of academic performance, retention, and sense of belonging were upand career goal planning and actions began to show.BackgroundSuccess in higher education institutions by itself is a subjective concept that depends on themetrics defining it. Factors such as retention, quality, completion, and attainment are typicallyaddressed by
writing efficient codes in a given programming • Persistent encouragement from the faculty memberslanguage. The eCTF problems awarded flags not only for the • Peer group’s success in the other parts of the projectcorrectness of the solution but also for the design’s efficiencyand speed. As a result, the course instructors offered lessons V. C ONCLUSIONSon-the-fly on basic algorithm and data structure during the In this paper, the authors have described activities beneficiallecture/lab sessions. This experience has also motivated the to increasing the engagement of underrepresented minoritieselectrical engineering department to consider an algorithm in an embedded
Theory into Practice, Action in Teacher Education, and Journal of Hispanic Higher Education. She earned her Ph.D. in Reading/Writing/Literacy from the University of Pennsylvania and has been a faculty member at UTEP since 2008.Dr. Alberto Esquinca, San Diego State University Alberto Esquinca is an Associate Professor in the Department of Dual Language and English Learner Education at San Diego State University.Helena Mucino-Guerra, University of Texas at El Paso Helena Muci˜no is a Ph.D. student in the Teaching, Learning, and Culture program at the University of Texas at El Paso (UTEP). She holds a master’s degree in Musical Education Research from the National Autonomous University of Mexico (UNAM). She is currently
students are expected to publish peer-reviewed journal papersas well as assist PIs with proposal writing.2- Oral Communication – TANMS students are encourage to freely articulate themselves andtheir ideas and thoughts during meetings with PIs and mentors. Additionally, students areexpected to deliver an oral technical presentations and posters.Core II - Engineering Success1- Innovation – Ability to execute new ideas in research, education, and industry with relevance(or relevancy) to multiferroics.2- Creativity – Ability to synthesize new ideas on multiferroics. For example, students are able tosuggest applications of multiferroics based on their research.Core III – Business and Marketplace Savvy1- Entrepreneur - Entrepreneurial mindset is
] including: a first-yearexperience course sequence with broad early exposure to engineering academic and careeroptions; community-engaged learning through participation in STEM outreach events; a course-based undergraduate research experience (CURE); a place-based learning community withintegrated instruction across multiple disciplines spanning two quarters.BackgroundWCC engineering students generally form a community of peer support at the 200-level becausemost engineering fundamentals courses are offered once per year, resulting in a cohort programby default. Students with similar transfer goals tend to have similar course schedules and buildcommunity around their shared interests. Unfortunately, many students who start WCC at the100 (or pre
projects that they completed. The logs were graded by the instructors for completeness. The struggles portion of the log format was used to provide additional resources or supplements. The instructors provided samples of good learning logs to help students with the content and writing. The format for the learning log can be found in Appendix C. 3. Peer Assessment: Students worked in learning groups and met weekly to engage in learning activities and problem solving. These sessions were documented to reflect on the learning that took place within the group. Students came together to discuss the grading and comments provided by the instructor and to learn from each other. The learning groups worked
Paper ID #12048The Power and Politics of STEM Research Design: Saving the ”Small N”Prof. Amy E. Slaton, Drexel University (Eng. & Eng. Tech.) Amy E. Slaton is a Professor of History at Drexel University. She write on issues of identity in STEM education and labor, and is the author of Race, Rigor and Selectivity in U.S. Engineering: The History of an Occupational Color Line .Prof. Alice L. Pawley, Purdue University, West Lafayette Alice Pawley is an Associate Professor in the School of Engineering Education and an affiliate faculty member in the Gender, Women’s and Sexuality Studies Program and the Division of
interview howshe felt that she maintained a good interpersonal relationship with her engineering peers and professors.Additionally, as the epigraph of this paper indicated, Rebecca was a high-performing student and hadachieved several markers of traditional success as an engineering student, including high grades andprestigious internships. Furthermore, at the time of the interview, she had planned to pursue a degree in aprofession outside of engineering following her graduation. However, as will be clear in our findings, herrole as an engineering student was important to understanding her core identity. 1We chose to present Rebecca’s case of shame as a mechanical engineering student because it
. Additionally,students were exposed to common college practices like office hours, course syllabi, coursereadings, and class discussions. In the 2018 course, specific time was set aside to allow studentsto work on their own (with freedom to work anywhere on campus). These portions of time werespecifically designed to give students choices in how to manage their time.The course, which drew juniors and seniors from various local high schools, did not havespecific prerequisites. Thus, a fundamental challenge of the course was to incorporatedifferentiation into the curriculum delivery to meet the needs of a variety of skill levels. Toaccommodate all students, each section of the course included peer-peer tutoring, office hoursduring lunch, and optional
toquestions such as "Who am I ?" at the beginning of the course provides the opportunity for suchpractice. We also recommend that students critique each other's concept maps. The opportunityto offer peer feedback further exposes students to the rules and expectations for conceptmapping. This scaffolding approach is expected to improve the quality of the pre- and post-evaluation of the concept maps during module implementation.Furthermore, reflective writing is a useful tool for having students reflect on their personalexperiences while surprisingly teaching students empathy. The act of looking beyond their ownexperiences to the experiences of various stakeholders appears to have created opportunities forstudents to consider broader social and
program and unique approaches relative tosimilar programs at peer institutions. We seek a broad systems perspective on addressingenvironmental issues, with a focus on ecological interactions and resilient designs that take intoaccount complexity and connectivity between systems. In the undergraduate curriculum, thisphilosophy drives the early focus on systems thinking and systems understanding and leads tothe inclusion of significant course requirements in ecology, sustainability, and industrial ecology.These course requirements are in addition to those typically found in Environmental Engineeringprograms at peer institutions. A complete list of the program objectives, student outcomes anddetails about the EEE degree requirements are included in
had immediate access to many resources (peers, TAs, instructors, spaces) to one wherestudents still had the opportunity to share in the same course resources, but did so to a lesser anddifferent extent than in Y1. In other words, as the larger Y2 course moves more toward aninstitutionalized, standard, more factory-like model, we note the tradeoff in losing some of thebenefits that existed in the smaller implementation of the course as well as some surprising gains.As the size of the Y2 pilot is more realistic for any first-year course at a large public university,we share our lessons learned in the hopes of helping other designers of first-year programsponder the consequences of scaling up any course to fit the standard scale of larger
University, IN, USA. She also holds an M.S. in Astronomy and Astrophysics and a B.S. in Astronomy and Meteorology from Kyungpook National University, South Korea. Her work centers on elementary, secondary, and postsecondary engineering education research as a psychometrician, data analyst, and program evaluator with research interests in spatial ability, STEAM education, workplace climate, and research synthesis with a particular focus on meta-analysis. She has developed, validated, revised, and copyrighted several instruments beneficial for STEM education research and practice. Dr. Yoon has authored more than 80 peer-reviewed journal articles and conference proceedings and served as a journal reviewer in engineering
Paper ID #33453Migrator Stories in an Aerospace Engineering ProgramDr. Devayan D. Bir, Loras College Prior to teaching at Loras College, Devayan pursued his doctorate in Aerospace Engineering at Iowa State University and has worked as a Computer Aided Analyst in India. He earned his B.E. in Aeronautical Engineering, and has been passionate about Aerospace Engineering all his life. Hobbies include playing the guitar, soccer, and photography. Research interests include innovative pedagogies (Active, Flipped, and Online instruction) and applied numerical methods. Devayan has published peer reviewed papers, presented at
has worked at the University of Glasgow specialising in teaching English for Academic and Specific Purposes. Anna is interested in academic development, particularly related to writing skills and graduate attributes. She has developed a keen interest in e-learning and how technologies can be used to enhance learning and teaching processes. Her special areas of interest include: effective online course and activity design, building online communities and multimodal approaches to writing and assessment. c American Society for Engineering Education, 2016 Investigating EAST (English for Academic Study Tele-collaboration) A UK- Palestine English Language Project for Engineering and Science
to connect to moreacademic support (2); (3); (4). By providing a physical environment for students in engineeringmajors to live, our program has historically allowed students to make academic and socialconnections early in their college career, which better supports their persistence. In recent years,students in the Engineering Leadership Community have taken multiple classes in the samesections together, including a one-credit academic success course and their introductoryengineering lab. This method uses Tinto’s learning community model, helping students to makeconnections between courses with their peers (1).The additional elements of service-learning and project-based learning have brought theresidents of the Engineering Leadership
members within their program of study. What made this workshop design different is the participation from each entity in the alliance and their knowledge about technology programs. The objectives for the workshops are accomplished by the following activities: 1. The students joined American Toastmasters or similar organizations which assists them with soft skills and helps them with their writing skills and public speaking. 2. Students received job training through practical lab assignments and real life applications. The students then present discoveries and are evaluated by their peers, industry, faculty, and advisory board. 3. Increase students’ technical
to support their academic and social transition to college. To achieve thesegoals, the course curriculum emphasized career exploration, collaboration with peers, writtenreflections, and diversity and global learning opportunities.We identified with Yosso’s theory of “navigational capital,” which captures the knowledge andskills of underrepresented or underprivileged students that enable them to navigate institutionsand communities where a dominant culture prevails 27. Rather than taking a deficit approach (i.e.minority students need to be fixed), this study focuses on cultivating the strengths and assets offirst-generation and URM students to guide them toward success in engineering. In addition tosupporting these students, this course and
institution requires we gain approval from the certifying body for theuniversity's state. All institutions in the state must evaluate the effectiveness of their UCC atregular intervals. Our teaching methods and content has evolved such that the institution's componentcourses and pedagogies of Team Teaching are vital to achieving the desired outcomes. Ourmodel is an "all in" team endeavor; our instructional team meets with all classes, and such is anenterprising dynamic, engaging faculty, staff, and near-peer teachers, working together. Modeling teamwork is a core attribution of our approach. Research-to-practice becomespractice-to-research as we learn new ways to help our students succeed while growing theirpreparedness for future success
first-year students, are particularly difficultfor students to succeed as they transitioned to college. Exam formats and expectations aredifferent than what students experienced in high school and vary from class to class. Engineeringmajors report spending a greater amount of time preparing for classes and exams [2]. Manystudents new to college report that they don’t know how to study and prepare for college exams[3], anecdotally reporting that in high school it was sufficient to simply read over notes. Mostnew students are also still building their support network of peers and may solely be studying ontheir own. Additionally, in many courses exams can comprise a significant portion of the finalgrade. Doing poorly on an exam can also have a