education. The presented findings emanate from the fourth phase of anextensive multiphase mixed-method research project. The project seeks to elucidate theimpediments that underrepresented students, particularly women, face in pursuing graduateengineering degrees and the potential solutions to overcome those barriers.Our methodology in this phase encompassed a comprehensive mixed-method survey, garneringresponses from over 600 undergraduate and graduate engineering students within the Faculty ofEngineering. Preliminary analyses revealed that the decision to pursue graduate studies isinfluenced by intersectional identity variables.In the sphere of engineering education, the pursuit of diversity, inclusion, and equity has longbeen recognized as
quite a bit of knowledge on data science and machine learning, spurred by the wide range of emerging applications. Through various projects, he has gained extensive experience with deep learning models and data interpretation. As such, with an emphasis on theory and a strict adherence to the machine learning pipeline, he is always keen on delivering tried and tested products.Sarah Louise Langham, University of Florida Sarah Louise Langham is a graduate of the University of Florida with a Bachelors of Science in Materials Science and Engineering. She is a format and content reviewer for EQuIPD grant Data Science/AI curriculum development. She has researched polyelectrolytes and rheological behavior under Dr. Neitzel
research area. He is currently the academic and research coordinator with the African Center of Excellence on New Pedagogies in Engineering Education (ACENPEE), Ahmadu Bello University Zaria; a World Bank funded Development Impact project with the aim of scaling up post graduate education at the MSc/PhD levels through regional specialization and collaboration in the West African Sub-region. Adrian is a registered Engineer with Council for Regulation of Engineering Practice in Nigeria (COREN), a member of the Nigerian Society of Engineers, a member of the American Society for Civil Engineers as well as the International Society for Soil Mechanics and Geotechnical Engineering (ISSMG).Fatai Olukayode Anafi, Ahmadu Bello
specificuniversity [7]. \ Figure 2: Conceptual Framework, adapted from Goldschneider (2023)This study seeks to address the following research questions: 1. In what ways, if any, do students’ pre-college socialization experiences influence their anticipatory sense of belonging to both their chosen university and their chosen discipline? 2. How do students’ anticipatory senses of belonging impact their eventual enrollment decisions?Broader Project BackgroundThe data used in this study are drawn from a broader pool generated as part of the UnderstandingKnowledge and Student Agency (UKSA) project, a collaborative effort between six
. Clarification of teachingwith blended learning [20]. methods in engineering education based on the use of technology andThe intentional design of blended learning environments digital media.using evidence-based practices has the potential to greatlyimprove learning efficiency by combining online self-study with traditional classroom teaching[21]–[23]. Blended learning has been proven to be highly advantageous for the field of engineeringeducation, specifically in cases where learning is centered around project-based activities [24]. Inthe context of chemical engineering design, the implementation of blended learning has been
French in 2020 from the University of Rhode Island. Besides her academic duties, she also works as a Learning and Talent Coordinator and consultant in Providence, RI where she works on various projects on teacher’s loans forgiveness programs, curriculum improvement and case management. Dira’s current research interests align with diversity, equity, and inclusion, specifically for Women of color, as well as community building and involvement American c Society for Engineering Education, 2021 Thinking as Argument: A Theoretical Framework for Studying How Faculty Arrive at Their Deeply-held Beliefs about Inequity in
the Director of the Weidman Center for Global Leadership and Associate Teaching Professor of Engineering Leadership within the Ira A. Fulton College of Engineering and Technology at Brigham Young University (BYU). His research and teaching interests include leadership, global agility, globalization, project management, ethics, and manufacturing processes. Gregg has lived in numerous locations within the USA and Europe and has worked in many places including North America, South America, Europe, Asia, and Africa. Prior to joining BYU, Gregg worked for Becton Dickinson, a Global Medical Technology fortune 500 Company in various engineering and leadership positions. Gregg is cur- rently the program chair/chair elect
, since the participants were at different stages of their lives, adolescence as opposed tocollege students, there was divergence in the focus and types of data collected. The study on thethree adolescent boys created a scenario centered on engineering design, for which funds ofknowledge was drawn upon, while the study on college students pulled from their existingengineering-related experiences to elicit funds of knowledge. However, both studies supportedcommunity-based design projects as valuable methods for drawing on students’ funds ofknowledge.Referring back to our research question—How is the funds of knowledge framework being utilizedto understand engineering concepts at the secondary and post-secondary level? —both examplescentered on the
physical and material characteristics”[55](p. 227). In graduate school, the different settings students operate within as they develop contain microsystems that can include interactions with advisors and peers, departments, as well as activities like coursework, research projects, and extracurricular projects related or unrelated to their field of study; they can also include students’ relationships with family members within their home, as well as with coworkers and a supervisor within a place of employment[50], [53], [56], [57]. These different interacting settings (andtheir microsystems) contain various patterns of or expected, appropriate kinds of activities, roles, and
Pennsylvania Brett Frankel received his Ph.D. in mathematics in 2016 from the University of Pennsylvania. After an instructionally-focused postdoctoral position at Northwestern University, he returned to Penn as a senior lecturer. Dr. Frankel was a 2009-2010 Fulbright fellow to Budapest, Hungary studying mathematics and mathematics pedagogy, and a 2017-2018 Project NExT fellow. He served as a graduate assistant to the Penn Emerging Scholars Program, and co-founded the Northwestern Emerging Scholars Program to improve female retention in pipeline courses for the mathematics major. ©American Society for Engineering Education, 2023Impact of an Emerging Scholars/Peer Led Team Learning program on
surveys and individual interviews in Year 1(2017-2018), Year 2 (2018-2019), and part of Year 3 (Fall 2019) of the project. No data werecollected in the Spring of 2020 due to COVID-19. Over the course of the three-year project, weattempted to examine girls’ perceptions of outreach educators as role models in a variety ofways. We collected data at the end of each academic semester, reviewing participants’ responses,and modifying the interview protocols and survey instruments when preliminary analyses ofstudent responses suggested additional or different questions would elicit more nuanced ordetailed participant responses. Figure 1 depicts the progression in how we shifted ourquestioning across the project. The progression reflects our efforts to
, Aerospace, Junior, White)Figure 8: Female students rate the degree to which they feel isolated in their engineering classes. Figure 9: Female students participants rate the frequency of being treated as if they were not competent while working with peers.The literature shows that women pursuing engineering often receive negative messages regardingtheir abilities [1]. Our female interview participants acknowledged this and indicated that acommon outcome is that women are often pushed towards non-technical roles in group projects.Our results show that 44% of our female participants are sometimes or often denied the opportunityto participate fully in group projects, as shown in Figure 10. A survey participant also
marginalized groups continue to pursue graduate education. In Golde’s work on socialization in graduate school, the first year of doctoral education isbroken into four tasks of transition. The first is intellectual mastery, in which a student completescoursework in their field. The second task is learning how graduate school operates and whatthey should expect from their life in graduate school as a student. Similarly, the third task isdescribed as learning how their projected profession works and determining how they feel aboutmoving in this direction post-graduation. Finally, the fourth task is integrating themselves intothe department and their cohort [1]. The program described in this work is designed to primarilyassist students with this
, building energy systems, engineering education, and first-year engineering experiences. Some of Dr. Bandyopadhyay’s current projects at TAMU include forecasting of residential electricity demand, occupant-centric building design and control, long-term performance of ground source heat pump systems, and implementation of Bloom’s taxonomy-based assessments in undergraduate me- chanical engineering courses. In addition to academic research and teaching, she is heavily involved in mentoring graduate students and first-generation undergraduate students in engineering disciplines within and beyond TAMU.Dr. Haejune Kim, Texas A&M University Haejune Kim EDUCATION Ph. D. in Mechanical Engineering, University of Wisconsin
condition and can nowimagine ways of “fixing” the perceived problem, but they project a set of solutions thatmedicalize the condition versus understanding social, cultural, and political forces that shapeindividual’s lives. If these are the paradigms under which we are designing new medicaltechnologies, we must ask: who receives high quality care?Analyzing a series of regularly experienced medical technologies, I argue from my position as abiomedical engineer, materials scientist, and a chronically ill person that historicallymarginalized populations are receiving worse care because of technology and how it has beenand continues to be designed.Suffering from COVID-19? If you are darker-skinned, pulse oximeter devices will be three timesless
Paper ID #39319Board 2A: WIP:Opportunities in Cultural Dimensions between Architectureand Civil Engineering students in EcuadorDaniel Cartuchevictor R viteriDr. Miguel Andres Guerra, Universidad San Francisco de Quito USFQ MiguelAndres is an Assistant Professor in the Polytechnic College of Science and Engineering at Uni- versidad San Francisco de Quito USFQ. He holds a BS in Civil Engineering from USFQ, a M.Sc. in Civil Engineering in Construction Engineering and Project Management from Iowa State University, a Ph.D. in Civil Engineering with emphasis in Sustainable Construction from Virginia Tech, and two Grad- uate
LS# LS Description P1 P2 P3 1 Leveraging web-based interactive methods to measure student understanding and adjust synchronous lecture content accordingly in real time. 2 Use of case-studies where students problem solve historical or hypothetical situations in course assignments (projects/homework/etc.) 3 Fostering collaboration and group work among students in class. (This could be assigning group projects, pairing students to work together on homework, creating “break-out rooms” for students to work on problems in synchronous class meetings or office hours.) 4 Introducing lessons (either synchronously or asynchronously) by presenting
introductory programming classes to an audience of computing andengineering students and therefore is well attuned to the challenges of first-year college studentslearning this material, although also at risk of projecting challenges her students face ontoparticipants.Dr. Meier grew up on a farm on a Native American reservation. He descends from WesternEuropean immigrants and nearby towns were mostly white European descendants. Native Siouxand Ponca Americans attended school, played sports, and socialized within the communities. Hegrew up appreciating Native American culture but saw inequities limiting education and careerpotential, and intersectionality resulting in cultural bias and discrimination. As a cisgender whitemale high school student, he
has experience with outreach projects focused on STEM education and mentoring.Dr. Alexandra Coso Strong, Florida International University As an assistant professor of engineering education at Florida International University, Dr. Alexandra Coso Strong works and teaches at the intersection of engineering education, faculty development, and complex systems design. Alexandra completed her doctorate in aerospace engineering at Georgia Tech. Prior to attending Georgia Tech, Alexandra received a bachelor’s degree in aerospace engineering from MIT and a master’s degree in systems engineering from the University of Virginia. Alexandra comes to FIU af- ter completing a postdoctoral fellowship at Georgia Tech’s Center for
training of mathematics teachers that is at the core of this problem. Since enrollment at UIC, Janet had dedicated her studies and research efforts on Mathematics Socialization and identity amongst pre-service elementary teachers, an effort at understanding the reasons for lack of interest in the subject with a view to proffer solution and engender/motivate interest amongst this group that will eventually reflect in their classroom practices. She is currently a Graduate Assistant with UIC Engage, a commu- nity focused project that provides help for less-privileged students from K-8 in mathematics, reading and writing. She continues to work as a substitute teacher occasionally to keep abreast with current practices
courses that explored technical and societal integration,and more design courses and projects that included themes of human-centered design andsystems thinking (Wisnioski, 2012). Paul B. Daitch at Rochester Polytechnic Instituteemphasized design as "the major vehicle which relates technique and society" (Daitch, 1970, p.21).PurposeFirst-Year Engineering (FYE) courses have received attention from practitioners and scholarsalike in the past couple of decades (Pendergrass et al., 2001; Kilgore et al., 2007). The First-Year Programs division of ASEE had 28 papers associated with it in the 2020 Annualconference alone. There is some agreement on the content that is taught in these courses,which comprises concepts such as design, mathematical modeling
Paper ID #32717Exploring Student Responses to Utility-value Interventions inEngineering StaticsMr. Lorenzo Laxamana Ruiz, California Polytechnic University, San Luis Obispo Lorenzo L. Ruiz is a 4th year Industrial Engineering student at Cal Poly San Luis Obispo. Throughout his undergraduate career, he has completed internships in various fields being exposed to manufacturing operations, business systems, and continuous improvement environments. He is currently working to- wards a career in technical project management. He has served three years on the board of the Institute of Industrial and Systems Engineers which
—rather than investigating systemic or “watershed”-type hazards [13]-[15]. Someapproaches that aim toward broadening faculty teaching strategies rather than protecting studentsfrom them include integrating relevant applications of STEM content; emphasizing the societalcontext and social justice implications of engineering work [16]; and using project-basedlearning to engage students in real-world applications and collaborative work [17].Moreover, engineering’s tendency to cling to an idea of itself as “apolitical” and “neutral,” ratherthan acknowledging its social construction and baked-in centering of white masculinity, has beenshown to be correlated with the marginalization of under-represented participants in engineeringculture [18],[19]. The
-related courses and does research with natural fiber composite materials. He is also interested in entrepreneurship,sustainable engineering, and appropriate technology in developing countries.Ms. Cynthia C. Fry, Baylor University CYNTHIA C. FRY is currently a Senior Lecturer of Computer Science at Baylor University. She worked at NASA’s Marshall Space Flight Center as a Senior Project Engineer, a Crew Training Manager, and the Science Operations Director for STS-46. She was an Engineering Duty Officer in the U.S. Navy (IRR), and worked with the Naval Maritime Intelligence Center as a Scientific/Technical Intelligence Analyst. She was the owner and chief systems engineer for Systems Engineering Services (SES), a computer
Paper ID #29167The Engineering Education Experiences of Students Serving in theReserves or National GuardDr. Catherine Mobley, Clemson University Catherine Mobley, Ph.D., is a Professor of Sociology at Clemson University. She has over 30 years experience in project and program evaluation and has worked for a variety of consulting firms, non-profit agencies, and government organizations, including the Rand Corporation, the American Association of Retired Persons, the U.S. Department of Education, and the Walter Reed Army Institute of Research. Since 2004, she been a member of the NSF-funded MIDFIELD research project on
critical reflection of the learner on the experience. Unlessembedded within a course as a service-learning activity (e.g. [13]), there may not be structuredreflection. This is particularly true in co-curricular activities, where advisors may worry thatformal reflection would deter college students from participating. However, the reflection couldoccur informally via a group discussion.Giles and Eyler [11] cite Dewey’s [12] four criteria for projects to be truly educative. The fourcriteria are: generate interest, worthwhile intrinsically, problems that demand new information,and cover a considerable time span. K-12 activities are often designed to be fun, so they arelikely to generate interest on behalf of both the college student and K-12 kids
levels of both structural response and secondary systems. After re- ceiving her PhD, Dr. Wong began a post-doctoral fellowship at Lawrence National Laboratory developing a modern computational framework for the nonlinear seismic analysis of Department of Energy nuclear facilities and systems. This work seeks to expand the understanding of soil structure interaction for these structures and the means of modeling this behavior both theoretically and experimentally. In addition to her research experience, Dr. Wong also has worked for the public and private engineering sectors in the areas of water infrastructure, transportation, data systems, and project management. She joined San Fran- cisco State University in 2014 as
co-teaching to students in engineering and science. She is co-Principal Investigator on a National Science Foundation (NSF) research and education project developing an ethnographic approach to engineering ethics education. c American Society for Engineering Education, 2017 Where Does the Personal Fit Within Engineering Education? An Autoethnography of One Student’s Exploration of Personal-Professional Identity AlignmentAbstract This paper presents an exploration of personal-professional identity alignment throughthe use of an autoethnography. To understand identity and identity formation, my researchadvisor and I drew from post-modernist
research and gender and culture in science education. Her research interests include girls’ participation in science and engineering; teacher’s engagement in action research; and science teachers’ integration of the engineering design process to improve science learning.James D. Lehman, Purdue University Dr. James D. Lehman is a Professor of Learning Design and Technology in the Department of Curriculum and Instruction and the Director of the Discovery Learning Research Center at Purdue University. He is member of the leadership teams of two current NSF-funded projects, Science Learning through Engineer- ing Design (SLED) and Professional Development for Computer Science (PD4CS). He holds a B.S. and M.S. in biology and
Education, 2017 DEVELOPMENT OF A WEB-BASED DECISION TOOLFOR SELECTION OF DISTRIBUTED ENERGY RESOURCES AND SYSTEMS (DERS) FOR MOVING COLLEGE AND CORPORATE CAMPUSES TOWARD NET-ZERO ENERGYAbstractNet-Zero energy buildings are currently being built, and they no longer consist of smalldemonstration projects but rather large commercial and institutional buildings. However,achieving a “net-zero energy building” concept for existing buildings has its challenges in anurban environment where private and/or public space around the building considered is limited,in addition to the inherent energy challenges associated with urban multi-story buildings. Whilethe most achievable task would be energy efficiency improvements in the operation of thebuilding