Paper ID #37350Educating the Workforce of the 21st Century through Smart ManufacturingSystems in the ClassroomsRoya Salehzadeh, University of Alabama Roya Salehzadeh obtained her B.Sc. degree in mechanical engineering from Urmia University, Iran, in 2010, and her M.Sc. degree from Amirkabir University of Technology (AUT), Tehran, Iran, in 2013. She is currently pursuing a Ph.D. in mechanical engineering from the Advanced and Intelligent Manufacturing Systems Laboratory at the University of Alabama, Tuscaloosa, AL, USA. Ms. Salehzadeh’s research interests are focused on human-robot interaction, automation, and
damitht6@my.yorku.ca, a.d.n50@hotmail.com, mjadidi@yorku.caKEY WORDS: Virtual Reality, Engineering Education, Earth systems, Experiential EducationABSTRACT:Learning complex engineering concepts in varying fields, from learning how to prototype a circuit on a breadboard all the way tolearning about the complex geological features that make up well known terrains, require hands-on experience as well as accessto sophisticated equipment. In the former situation, many educational institutions can afford lab equipment such as electroniccomponents and large laboratory workplaces. However, there are instances where purchasing expensive equipment for learningis not a viable option. In the latter case, learning about the geological features of a place such
Paper ID #39857Commonality of Failure Modes in New Engineering Program DevelopmentProf. David Robert Bruce, University of Ottawa, Canada Dr. Bruce has a passion for technology development with a focus on empowering society through altering perception and perspective by including new ways of looking at engineering.Dr. James Borrelli, Stevenson UniversityGennifer Smith, University of San FranciscoDr. Michael G. Lerner, Earlham College Michael Lerner is a computational biophysicist and convener of the Department of Physics, Engineer- ing and Astronomy at Earlham College. He teaches introductory, intermediate and advanced courses
Paper ID #36545A Review of Multi-Disciplinary Introduction-to-Engineering Courses andUnified-First-Year Engineering ProgramsDr. Gregory J. Mazzaro, The Citadel Dr. Mazzaro earned a Bachelor of Science in Electrical Engineering from Boston University in 2004, a Master of Science from the State University of New York at Binghamton in 2006, and a Ph.D. from North Carolina State University in 2009. From 2009 to 2013, he worked as an Electronics Engineer for the United States Army Research Laboratory in Adelphi, Maryland. For his technical research, Dr. Mazzaro studies the unintended behaviors of radio-frequency electronics
Undergraduate Teaching twice. He has published one book and more than 165 book chapters, scholarly journal papers, and refereed conference proceedings. He has supervised more than 20 Ph.D. and MS students to completion during his tenure, and taught more than thirty (30) different courses related to computer and engineering technology. He is active in several professional societies and editorial boards and is a senior member of IEEE and ASME and ASEE and AHSIE.Prof. Amir Abtahi, Florida Atlantic University Amir Abtahi (B.M.E., 19’72, University of Minnesota, and M.S., 1975, and Ph.D. 1981, MIT) teaches an array of fundamental and applied engineering courses in the Department of Ocean and Mechanical Engineering at FAU. With a
students and graduate students (lab projectmodule): This module will develop students an ability of formulating standard operatingprocedure (SOP) and facilitating the SOP to new standard, if there is no standard dealing with aspecific AM project. A project in a laboratory class will be used to cover the topics on AMlightweight part design, manufacturing, and testing. Students will design lightweight part (suchas lattice or topology optimized structure), practice fabricating AM parts, and performmechanical testing of the AM lightweight parts, using the AM laboratory. Due to the geometricalcharacteristics, AM lightweight part requires specific test protocols to develop an appropriatedatabase of engineering design properties, including specimen
, epistemologies, assessment, and modeling of student learning, student success, student team effectiveness, and global competencies He helped establish the scholarly foundation for engineering education as an academic discipline through lead authorship of the landmark 2006 JEE special reports ”The National Engineering Education Research Colloquies” and ”The Research Agenda for the New Dis- cipline of Engineering Education.” He has a passion for designing state-of-the-art learning spaces. While at Purdue University, Imbrie co-led the creation of the First-Year Engineering Program’s Ideas to Inno- vation (i2i) Learning Laboratory, a design-oriented facility that engages students in team-based, socially relevant projects. While
Edition, Brigham Young University Press, 1995.6. L. E. Ortiz and E. M. Bachofen, “An Experience in Teaching Structures in Aeronautical, Mechanical and Civil Engineering, Applying the Experimental Methodology,” 2001 American Society for Engineering Education Annual Conference & Exposition Proceedings, Session 2526.7. M. Abdulwahed and Z. K. Nagy, Applying Kolb’s Experiential Learning Cycle for Laboratory Education, Journal of Engineering Education, July 2009, pp. 283-294.8. D. A. Wyrick and L. Hilsen, “Using Kolb’s Cycle to Round out Learning,” 2002 American Society for Engineering Education Annual Conference and Exposition Proceedings, Montreal, Canada, June 17-19, 2002. Session 2739.9. T. S. Harding, H.-Y. Lai, B. L. Tuttle, and
for ten years. She also served as an adjunct faculty in the Engineering Technology Program at Triton College in River Grove, IL for seven years.Mr. Nagash Clarke, University of Michigan Nagash Clarke is a doctoral student at the University of Michigan working with Dr. Joi-Lynn Mondisa. In his research, he examines mentoring and its particular implications for minoritized populations, as well as white male allyship in STEM higher education. He received a Bachelor’s in Chemistry from Pace University and Masters degrees in both Chemical Engineering and Engineering Education Research from the University of Michigan. He teaches chemistry at Washtenaw Community College. ©American Society for
B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing model-eliciting activities in mechanical engineering courses, inquiry-based learning in mechanics, and design projects to help promote adapted
, Dr. Alexandra Coso Strong works and teaches at the intersection of engineering education, faculty development, and complex systems design. Alexandra completed her graduate degrees in Aerospace Engineering from Georgia Tech (PhD) and Systems Engineering from the University of Virginia (UVa). Prior to attending Georgia Tech, Alexandra received a bachelor’s degree in aerospace engineering from MIT and a master’s degree in systems engineering from the University of Virginia. Alexandra comes to FIU after completing a post- doctoral fellowship at Georgia Tech’s Center for the Enhancement of Teaching and Learning (CETL) and three years as a faculty member at Olin College of Engineering in Massachusetts. Alexandra’s
engineering, mission engineering, energy storage systems, multifunctional structures and materials design, and the scholarship of teaching and learning.Prof. Daniel DeLaurentis, Purdue University Dr. Daniel DeLaurentis is a Professor at the School of Aeronautics and Astronautics, Purdue University, where he also serves as Vice President for Discovery Park District (DPD) Institutes. His research centers on design and system engineering methods for aerospace systems and systems-of-systems. Dr. DeLau- rentis is Chief Scientist in the DoD Systems Engineering Research Center (SERC) and a Fellow of both INCOSE and AIAA. ©American Society for Engineering Education, 2023 A System-of-Systems
student’s point of view as it relates to satisfaction and a senseof belonging, particularly in engineering technology classrooms and labs.Purpose:This paper was derived from the observations of one construction management program in theMidwest that noticed an immediate need for change related to the way that their primaryclassroom and laboratory appeared and functioned. The educators aspire to improve thesefacilities in the best interests of faculty, students, and visitors alike. The authors of this paperoutline the observations which revealed the shortfalls, explain the exploratory steps which weresubsequently taken to identify the overarching problems that existed, highlight the ways in whichfunding and resources were obtained to improve the
team-based work structures, perfor- mance management, quality management, research methodology, and engineering education.Mr. Francisco Cima, Old Dominion University Francisco Cima is a PhD student of Engineering Management and Systems Engineering at Old Dominion University. He obtained his Masters in Business Planning and Regional Development from the Techno- logical Institute of Merida. His areas of interest are innovDr. Krishnanand Kaipa, Old Dominion University Dr. Krishnanand Kaipa is an Assistant Professor and director of the Collaborative Robotics and Adaptive Machines (CRAM) Laboratory in the Department of Mechanical and Aerospace Engineering at the Old Dominion University. Dr. Kaipa received his BE (Hons
Mechatronics from the University of Bourgogne Franche-Comt´e (UBFC), France, and currently working as the Mechanical Engineering Laboratories Manager at Texas A&M University at Qatar. He joined Texas A&M University at Qatar in 2007 coming from University of Sharjah. Dr. Al-Hamidi had been appointed as a visiting lecturer in 2018 to teach design related courses in the mechanical engineering program. He specializes in product design, instrumentation, controls, and automation. Dr. Al-Hamidi founded the Engineering Enrichment Program in 2016, which is currently one of the Center for Teaching and Learning pillars. He received three Transformative Engineering Education grants related to multidisciplinary education in 2018
design. His current teaching load primar- ily consists of courses related to advanced embedded digital systems.Ms. Bhavana Kotla, Purdue Polytechnic Institute, Purdue University Ph.D. Candidate at the Department of Technology Leadership and Innovation, Purdue Polytechnic, Purdue University, Indiana, USA. Current area of research: Program Assessment in Entrepreneurially Minded Curriculum/Programs.Dr. Lisa Bosman, Purdue University Dr. Bosman holds a PhD in Industrial Engineering. Her engineering education research interests include entrepreneurially minded learning, energy education, interdisciplinary education, and faculty professional development. ©American Society for Engineering
. Second,engineering researchers can narrowly isolate experimental variables and follow uniform andwidely-accepted laboratory testing standards. The results from engineering research are well-defined and replicable, and proposed models can be validated. Unlike engineering research,EER typically includes a broad range of uncontrollable confounding variables and a lack ofspecificity and guidance in the selection of appropriate theoretical frameworks and analyticalmethods [5,6].Since engineering faculty are often the initiators of EER studies, it is logical that faculty whoalready teach engineering courses and conduct engineering research may be inclined to pursueEER opportunities. Their motivation may be to either complement their ongoing
Department of Civil Engineer- ing, Morgan State University, Baltimore, Maryland. Pelumi got his BSc and MSc degree in Physics from Obafemi Awolowo University, where he also served as a research assistant at the Environmental Pollu- tion Research unit, in Ile-Ife, Nigeria. As part of his contribution to science and engineering, Pelumi has taught as a teaching assistant both at Morgan State University and Obafemi Awolowo University. With a passion to communicate research findings gleaned from experts in the field as he advances his career, Olaitan has attended several in-person and virtual conferences and workshops, and at some of them, made presentations on findings on air pollution, wastewater reuse, and heavy metal
the first to do so. The specific implementation forms include: offering dedicated STEM courses, club-based teaching, focusing on science and technology competitions, project-based courses, open laboratory space-oriented, and diversified comprehensive courses[22]. From the gradually “captivating” development of theory and practice, we cannot help but raise the following question: under the unique institutional context in China, what exactly are the core connotations and the primary form represented by STEM education? What factors make it up? What is the relationship between these factors? Answering these questions has important implications for the in-depth promotion of STEM education in China and
Fulbright Commission since 2019.Christine Tessele Nodari, Universidade Federal Do Rio Grande Do SulLuis RabeloPaula Kvitko de Moura, Federal University of Rio Grande do SulArthur Marcon, Universidade Federal Do Rio Grande Do SulAngela de Moura Ferreira Danilevicz ©American Society for Engineering Education, 2023 METHOD TO MONITOR HIGHER EDUCATION STUDENTS' COMPETENCY DEVELOPMENT THROUGH ASSESSMENT RUBRICSAbstractThe competency-based education model has been one of the paths taken by higher educationinstitutions concerned with offering programs relevant to the market and societal needs.However, adapting teaching to a competency-based education model can bring manychallenges, such as
Laboratories. Since 1993 he has been with Bucknell University where he is currently Professor of Electrical and Computer Engineering. His research interests include antenna array system design, signal processing, and medical ultrasound imaging. Dr. Kozick received a 2006 Best Paper Award from the IEEE Signal Processing Society and the Presidential Award for Teaching Excellence from Bucknell University in 1999.Christa Matlack, Bucknell University Christa Matlack serves as a Career Coach in the Center for Career Advancement at Bucknell University where her role is to empower undergraduate students to seek meaningful careers and to guide students through the career development process. In addition, Christa is a co-leader of
has primarilybeen applied to automated essay or open-ended question grading, semantic evaluation of studentwork, or the generation of feedback for intelligent tutoring-based student interaction. However,what is notably missing from NLP work to date is a robust automated framework for accuratelyanalyzing text-based educational survey data. To address this gap, this case study uses NLPmodels to generate codes for thematic analysis of student needs for teaching assistant (TA)support and then compares code assignments for NLP vs. those assigned by an expert researcher.Student responses to short answer questions regarding preferences for TA support were collectedfrom an instructional support survey conducted in a broad range of electrical
sustainability and environmental engineering, including the Journal of Cleaner Production, Environmental Engineering Science, Waste Management & Research, Journal of Industrial Ecology, International Journal of Life Cy- cle Assessment, Sustainability, and Resources, Conservation & Recycling. Prior to his position at UWT, he was an Associate Professor in Mechanical Engineering at the University of Michigan-Flint (UM-Flint). During his time at UM-Flint, he was the recipient of the Dr. Lois Matz Rosen Junior Faculty Excellence in Teaching Award (2017). He completed his postdoctoral fellowship at the U.S. Environmental Protection Agency’s National Risk Management Research Laboratory in Cincinnati, Ohio.Eva Yihua MaMarc
education and career and technical educa- tion. Dr. Clark is recognized as a Distinguished Technology Educator by the International Technology Engineering Education Association and for the American Society of Engineering Education; Engineering Design Graphics Division.Mr. Erik Schettig, North Carolina State University at Raleigh Erik is a lecturer in the Technology, Engineering, and Design Education department and a Ph.D. student in the Learning and Teaching in STEM program at NC State University. He has served as a technology, engineering, and design education teacher in middle and high schools. Erik teaches introductory engi- neering graphics courses at NCSU and his research interests focus on developing engaging
Tufts University in mechanical engineering and STEM education respectively, and completed postdoctoral work at the University of Michigan. Her current research involves examining different types of homework problems in undergraduate engineering science courses, the intersection of affect and engineering identity, and improving the teaching of engineering courses. ©American Society for Engineering Education, 2023 WIP: Exploring how Students Grapple with Agency in Open-Ended Engineering ProblemsIntroductionThis work in progress paper examines student agency in engineering problem solving. Typicalengineering homework problems, especially those assigned in engineering science
applicable) and energy–environmentinteraction related inputs to the students.(d) It should provide a balance between theory and practical aspects. Therefore, its curricula shouldinclude inputs on laboratory and demonstration experiments, hands-on-skills training, trouble-shooting,design and manufacture inputs besides lectures, tutorials, assignment and seminar, etc.(e) It should be flexible and dynamic thus allowing for future improvements in the content and structureof teaching/training programme.(f) It should be compatible with global efforts to facilitate effective and mutually beneficial experiencesharing and interaction with other institutions in the world.(g) To the extent possible, the university level teaching/training programmes on
of the Diversity, Equity and Inclusion (DEI) Council at CSU. She advocates for the incorporation of high-impact practices such as problem-based learning into educator lectures, laboratories, and outreach activities to engage students and the community in the education process, particularly STEM education.Dr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduaKelly Bohrer, University of Dayton Kelly Bohrer is the Executive Director of the ETHOS Center, a community engagement center
traditional hinged bar and weight experimental set-up frombeginning physics laboratories, as illustrated in Figure 3, can be utilized for instruction in thefirst objective. Objective #2 is analytical and will involve problem solving. A vector table withpulleys and weights, also from high school physics labs, and shown in Figure 4, is planned foruse in teaching objective #3. Objective #4 can be taught using individual truck tire scales, anexample of which is provided in Figure 5, or alternatively, using contact paper and tire pressuregauges. The remaining learning objectives for this vehicle balance module will involve using asmall-scale pulling tractor that the students can either have provided or be allowed to assemble.The pulling tractor has been
, [5], in a study of 17 Ohio institutions thattransitioned from quarters to semesters, found that although there was an increase in studentsbecoming de-motivated, there was an increase in students’ self-efficacy towards theircoursework. This research informed choices we made in our curriculum design, such as havingflexibility in the structure so that students could change majors in their first year and potentiallysecond year without a delay in graduation.Description of Case Study This paper focuses on the quarter to semester transition for a single department(mechanical engineering) at a large, public, undergraduate teaching focused university in thewestern United States. The university is 48% women and 52% men, 15% of students are
estimated value of all non-personnel financial support providedto the new hire. Following this logic, we sought to identify high-level, relatively universalcomponents to faculty startup packages that may critically influence a faculty member’srecruitment and pathway to success (e.g., salary, laboratory space/equipment as warranted byresearch field, graduate student and/or post-doctoral researcher support, and teaching load).Additionally, the University offers pre-tenure leave, as guaranteed in the faculty handbook, andoffered COVID-19 related tenure clock extensions; thus, we also wanted to assess the equity inuse of these guaranteed supports. Because the same staff and administrative personnel would haveaccess to that information, it was concluded