Bolha, TE Connectivity Mechanical/Project Engineer. Sara is a robotic automation project engineer in TE Connectivity's Global Technology group. She is responsible for design and implementation of flexible automated cells for TE Connectivity's 80+ North America and EMEA production facilities. “Experiences of Female Civil Engineers in the Workplace” by Ms. Amanda Hess, Senior Project Engineer; and Ms. Kate Aulenbach, Hydrologic and Hydraulic Engineer, Gannett Fleming, Inc, a civil engineering company in Central Pennsylvania. “Real Challenges Engineers Face in the Workplace - Working with People,” by Ms. Ms. Rachel Smithers. Area Manager, ArcelorMittal Steelton, LLC. Ms. Rachel Smithers
from practices and experiments, from praxis. Because of the need for further praxis inliberatory engineering education as a pedagogical imperative, and the limited, almost nonexistentengagement between the topics we place in conversation (pedagogy, critical thinking, liberationpraxis and theory), this paper aims to initiate and catalyze attention on the subject matter, but itwill not aim to resolve some of the questions it opens. Rather, we emphasize the importance ofliberatory theory and praxis for contemporary engineering education and, then, suggest somecriteria that might guide praxis and broader shifts in pedagogical strategies. To that end, weintend for the project to prompt further research and discussion on these topics.Engineering
silenced or sanctioned. We recognize the wealth of bodies ofknowledge, skills, and practices that Latinx adolescents bring to the classroom. Our work viewsNepantla as the state that leads to new knowledge, and acknowledge that framing engineeringproblems with a different worldview is not a “deficient” understanding of engineering in general.On the contrary, we suggest that recognizing Latinx adolescents’ unique perspectives of viewingengineering has the potential of creating opportunities for culturally responsive engineeringeducation.Context of the StudyThis project took an ethnographic approach to qualitative research14 to investigate how Latinxadolescents became nepantleros and nepantleras as they worked in community-basedengineering challenges
equity and inclusive social justice.ResultsWe have three stories to share: Lorena writes about her experience as an undergraduate studentexperiencing microaggressions in a group explicitly designed to foster and model inclusivepractices; Devlin writes about his experience as a faculty member trying to facilitate that groupand address those microaggressions, and; Christina writes about her experience as a graduatestudent collecting and reporting her colleagues’ negative experiences in a positive and productiveway.LorenaThe purpose of the project I was taking part in was to create and implement inclusive groups forstudents These groups are intended to benefit students who feel excluded or uncertain in anunfamiliar environment. The group met for
) and adaptive learning system (AL) are centrallymanaged by the University. The integration of engineering content with the LMS/AL requiredfrequent coordination between the engineering faculty and the University’s project manager.Using PowerPoint and teleconferences provided project managers an explanation of how theengineering content should be taught and delivered. For example, Figure 1 provides one visualrepresentation on how to deliver and integrate the engineering content with the University’s ALsoftware. Figure 1 consists of PowerPoint slides to create the flowchart. The University’s ALplatform is a presentation and analytics tool to track student progress for the educator. The ALsoftware was successfully applied for trigonometry and pre
to make soundjudgments about the credentials of a person with whom this professional shares a specialrelationship by considering but not being “distracted” by such a relationship. As Confucianistshave argued, “juxian bu biqin (selecting virtuous people does not avoid relatives).”Second, scholars in engineering management tend to emphasize cultural differences inimplementing and managing specific engineering projects. A vast majority of their theories andmethods are often drawn from the literature in international business and management. Forinstance, Wang and Thompson compare cultural differences in business ethics in Europe, US,and Asia.13 They have found that business organizations (e.g., companies) have variedunderstandings of: (1) moral
universitaria professionale della Svizzeraitaliana (SUPSI).II.2.4. Evolution As the Global Perspectives Program has grown within Virginia Tech and gained externalrecognition [5], a variety of projects and programs have been initiated. Additional GPPexperiences from Virginia Tech have been started to Chile and Ecuador. Universität Basel, andmore recently Universität Zürich, have developed successful Global Perspectives Programs, asdiscussed previously. Learning of the Global Perspectives Program of the Virginia TechGraduate School has aided Texas Christian University in developing the Global Outlooks inEducation program [6], and a partnership with GPP Ecuador has led to the 21st Century FacultyInstitute at the Universidad San Francisco de Quito
Costs-benefits with engaging in socially responsible behavior, 0 such as service.Study design and processThe research was executed in three phases: instrument design (Phase I), validation (Phase II),and full survey launch and data analysis stage (Phase III). Phases I and II focused on tailoring theresearch instrument to be appropriate for both the research objectives and populations of interest.Phase III focused on answering the research question and laying the groundwork for futureresearch. The phases for this research project are described herein.Pilot phase I: Survey developmentA survey to identify social responsibility based on the PSRDM was developed using the DillmanTailored Design method [19
Paper ID #25588Students’ Experience with Collaborative Engineering Design Challenges in aMiddle School Engineering Course (Evaluation)Dr. Jessica D. Gale, Georgia Institute of Technology Dr. Jessica Gale is a Senior Research Scientist at Georgia Tech’s Center for Education Integrating Sci- ence, Mathematics, and Computing (CEISMC). Her research focuses on project-based learning, STEM integration at the elementary and middle grades levels, design-based implementation research, and fidelity of implementation. Dr. Gale has a particular interest in project-based engineering in elementary school communities and the socio
collaborate on multidisciplinary teams addressing real world challenges and with industry engagement. College signature programs include the Texas A&M I-Corps Site, Ag- giE Challenge, INSPIRES, and two annual Project Showcases. Magda is the Principal Investigator of the Texas A&M University I-Corps Site grant and has been active in promoting entrepreneurship both at the local and national level.Dr. So Yoon Yoon, Texas A&M University So Yoon Yoon, Ph.D., is an associate research scientist at Institute for Engineering Education and Innova- tion (IEEI) in College of Engineering at Texas A&M University and Texas A&M Engineering Experiment Station (TEES). She received a Ph.D. in Educational Psychology with
NI ResearchThis section presents excerpts from a Narrative Inquiry project with an SVSM undergraduateengineering student named Cooper (self-selected pseudonym). Cooper’s stories of becoming anengineer are being documented within a narrative inquiry project to understand the experiencesof “nontraditional” [71, 72] undergraduates in engineering [73, 74]. Examination of Cooper’sstories of becoming are important for the field of engineering education; they provide rare andvaluable glimpses into the knowledge, skills, and assets that returning veterans bring to theengineering profession, as well as the unique ways in which veterans experience formalengineering education. I share practical understandings gained about veteran student experiencethat
Paper ID #26270Practice Exam Program Impact on Student Academic Performance and Stu-dent RetentionMs. Dawn Patterson Shew M.Ed., University of Kansas Dawn Shew is the Director of Undergraduate Academic Services at the University of Kansas School of Engineering.Dr. Lorin P. Maletsky, University of Kansas Dr. Lorin Maletsky joined the Mechanical Engineering faculty at the University of Kansas in 2000. He is currently a full professor and serving as the Associate Dean for Undergraduate Programs in the School of Engineering. He has created and taught a project, team-based freshmen course in Mechanical Engineering as well as
Research in 2006,” Des. Res. Q., Sep. 2006.[2] E. Sanders, “An Evolving Map of Design Practice and Design Research,” Interactions, pp. 13–17, Dec. 2008.[3] IDEO, The Field Guide to Human-Centered Design. 2015.[4] C. B. Zoltowski, W. C. Oakes, and M. E. Cardella, “Students’ ways of experiencing human-centered design,” J. Eng. Educ., vol. 101, no. 1, pp. 28–59, 2012.[5] I. Mohedas, S. Daly, and K. Sienko, “Design Ethnography in Capstone Design: Investigating Student Use and Perceptions,” Int. J. Eng. Educ., vol. 30, no. 4, pp. 888–900, 2014.[6] R. P. Loweth, S. R. Daly, J. Liu, and K. H. Sienko, “Assessing Needs in a Cross-Cultural Design Project: Student Perspectives and Challenges,” Int. J. Eng. Educ., vol. 36, no. 2, pp
programs that work to bolster invention and entrepreneurship maypositively impact both students and teachers in their personal and professional growth and alsoinfluence the well-being of rural communities more broadly. Despite the symbiosis between rural areas and entrepreneurship, past attempts to expandthe K12 InVenture Prize program to rural regions have not been successful. A first strategyattempted was to provide travel stipends for students to travel to Georgia Tech for the statefinals. This offering, however, did not address the anxiety that students and teachers have aboutpresenting a project at an elite university. The leap from school competition to state competitionfelt too large for many schools. A second strategy was to
better matched their strengths and/or interests. Someof the students with the “biggest ideas” around advancing novel, environmentally-friendlydesigns were disappointed that the engineering courses seemed to be focused on teaching currentpractice rather than creative solutions. Given these findings, it might be impactful on retention tohave EnvE students take a course specific to environmental engineering and/or one that allowsthem to be innovative in envisioning solutions to problems of their interest (such as a project-based course that allows students to select a project of interest, and significant latitude increatively exploring solutions).Students who felt that their education should be more balanced between technical and societalissues
manufacturing-focused courses. Sarah’s research interests include aspects of project-based learning and enhancing 21st century skills in undergraduate engineering students.Dr. Adam Lenz, Oregon State University c American Society for Engineering Education, 2018 Exploring students’ and instructors’ perceptions of engineering: case studies of professionally-focused and career exploration courses Work in ProgressAbstractPrevious work developed a working definition of engineering professional identity (EPI), definedas the degree of internalization of the norms, behaviors, language, values, and practices ofengineering. This EPI
Paper ID #21703#EngineersWeek: Broadening our Understanding of Community Engage-ment Through Analysis of Twitter Use During the National Engineers WeekDr. Aqdas Malik, George Mason University Aqdas Malik is a Postdoctoral Research Fellow at the Department of Information Sciences and Tech- nology, George Mason University. His multidisciplinary academic and industry experience spans two key disciplines: Human-Computer Interaction and Social Media Communication and Analytics. He is currently engaged in a number of research projects funded by the National Science Foundation (NSF). In some of his recent projects he has applied
division bylaws;• developed and circulated newsletters on Diversity Committee efforts;• worked with the ASEE Board of Directors to get Figure 1. Example of Footsteps from approval for and to institutionalize the ASEE Best 2017 Annual Conference Diversity Paper;• piloted the footsteps project, where large stickers were placed on the floor throughout the convention center in Indianapolis in high traffic spaces (see Figure 3);• created the call for papers and an assessment tool for the ASEE Best Diversity Paper; and• worked with ASEE information technology staff to identify potential papers within the paper review
equity, and implicit bias in academia.Dr. Lizabeth T. Schlemer, California Polytechnic State University, San Luis Obispo Lizabeth is an Associate Dean and a professor at Cal Poly, SLO in Industrial and Manufacturing Engi- neering. In her role of Associate Dean, she advocates for equity and access. She has been teaching for 22 years and has continued to develop innovative pedagogy such as project based, flipped classroom and competency grading. Through the SUSTAIN SLO learning initiative, she and her colleagues have been active researching in transformation in higher education.Ms. Emily E. Liptow, California Polytechnic State University, San Luis Obispo Emily Liptow currently works at a tech startup accelerator in
, University of Illinois at Urbana-Champaign Andr´e Schleife is a Blue Waters Assistant Professor in the Department of Materials Science and Engineer- ing at the University of Illinois at Urbana-Champaign. He obtained his Diploma and Ph.D. at Friedrich- Schiller-University in Jena, Germany for his theoretical work on transparent conducting oxides. Before he started at UIUC he worked as a Postdoctoral Researcher at Lawrence Livermore National Laboratory on a project that aimed at a description of non-adiabatic electron ion dynamics. His research revolves around excited electronic states and their dynamics in various materials using accurate computational methods and making use of modern super computers in order to understand
. Facilitate opportunities for employees to work on projects or issues that are socially relevant Men working in engineering and computing to serve as role models. Emphasize ethical and social issues when teaching engineering and computing. Encourage a supportive environment in the classroom and in the program. Encourage and assist early contact between students and professionals. Emphasize the wide variety of expertise necessary to be successful as an engineer or computing professional. Highlight as early as possible the different facets that make up engineering and computing.Methodology and Educational Learning Strategies:This course came out of a passion by the instructor to enhance leadership
Industrial Engi- neering from the University of Arkansas and is currently working on a PhD in Industrial Engineering at the University of Arkansas.Mr. Trevor Joe Dodson, University of Arkansas c American Society for Engineering Education, 2018 Effectiveness of GRE Workshops to Increase AwarenessAbstractExcelling on the Graduate Records Exam (GRE) can be an important milestone for students whowish to attend graduate school. As part of an NSF-STEM project, two GRE workshops wereimplemented to inform students about the importance of starting the preparation process earlierin their undergraduate career. The second workshop, occurring the year after the first, includedminor modifications based on the
can build self-efficacy directly and encourage moremastery experiences.Contextual examples of each of Bandura’s four sources of self-efficacy in undergraduateengineering education: first, mastery experiences could consist of completing practice problemsto master theory, engaging in project work and hands-on activities to build engineering skills,and successfully working in teams and giving technical presentations. Second, role models whoshare a similar identity in populations of upper year students, alumni, outside speakers, or facultymay provide vicarious experiences. Third, classmates, teaching assistant, professors, mentors,friends and family may all provide social persuasion, and fourth, an individual's’ personal orextra-curricular
use avariety of qualitative analysis methods to answer questions that contribute to the ongoingresearch and development of the project. This paper reports on an engineering activity designedusing the aforementioned interest-based framework. The participants of this activity wererecruited from a 5-week summer camp focused on positive youth development by engagingstudents in a number of physical (i.e., swimming, judo, and basketball) and learning (i.e.,videography, financial literacy) activities. This study reports on 40 students who consented to bea part of the study, all of whom were between 9-14 years of age and qualified for free or reducedlunch. The students participated in an engineering activity designed and delivered by the researchteam
there is still room for improvingparticipation at all levels of the professoriate.LSAMP13 has four alliance tracks that assist universities and colleges in their efforts to increasethe numbers of students matriculating into and successfully completing high quality degreeprograms in STEM. Specifically, Bridge to Doctorate (BD) projects are for post-baccalaureatefellowships that provides support to students in the first two years of STEM graduate studies. In2015, at the 37th Annual Fall Research Conference of the Association for Public Policy Analysisand Management (APPAM), Margaret Sullivan of Mathematica Policy Research presentedfindings from the evaluation of the LSAMP impact on URM students with support from the BDprogram. Sullivan stated URM
st 1 year 64% 61% 85 + 42 = 127 2nd year 23% 25% 31 + 17 = 48 rd 3 year 8% 9% 10 + 6 = 16 4th year 5% 5% 7 + 4 = 11 During the first week of the semester, students self-enrolled in teams of 6 or 7 for an out-of-class design project using the self-sign-up group feature of Canvas (Instructure, Salt Lake CityUT); these same teams were also used for all in-class learning activities. Class periods devoted toactive learning where indicated as such on the course syllabus and schedule. On these scheduled
the 2015 Best Diversity Paper.Mejia, et al., [3] presented a paper nominated by the K-12 and Pre-College Engineering Divisionexploring Latinx adolescents’ perceptions of engineering and their engineering abilities afterparticipation in community-based design projects. Students were from working class familiesand most had parents with limited education who worked in farming or other manual laboractivities. The adolescents, ages 14-17, worked in teams to identify a problem in theircommunity and to use engineering design to solve the problem. Most of the participants changedboth their perceptions of engineering as well as their self-efficacy as they worked on theseprojects. The design experience influenced participants’ perceptions of
manufacturing in both of these disciplinesis needed8. Many current engineering programs do not emphasize the marriage of design andmanufacturing in a modern industrial technical workforce [10].Many research studies have assessed the quality of exposure to manufacturing through the seniordesign or capstone course. McMasters and Lang indicate that few people in industry have anunderstanding of how the current engineering education is undertaken. Through design projects,the inclusion of industry partners in the education process will enhance the education provided tothe students and better reflect the expectations of industry [11]. Universities are exposingstudents to manufacturing through senior capstone design courses to offer students with arealistic
. was formed in conjunction with thecreation of the nation as a social project. Critical race theorists identify that race is indicative ofnot just the creation, but its continuation each day [14]. Although we are using two frameworksto look at individual and structural racism from a critical perspective, we recognize that theseframeworks are not part of critical race theory.Engineering Education and Critical Race StudiesEngineering education research focuses on guiding the future engineering practice towardsimproved quality and diversity. Some engineering education researchers investigate the field’spersistent racial homogeneity [4]. There is constant talk about the need for diversity, and effortsare made through “minority in engineering
Computing Identity and Persistence Across Multiple Groups Using Structural Equation ModelingAbstractDespite the projected growth of computer and information technology occupations, manycomputing students fail to graduate. Studying students’ self-beliefs is one way to understandpersistence in a school setting. This paper explores how students' disciplinary identity sub-constructs including competence/performance, recognition, interest, and sense of belongingcontribute to academic persistence. A survey of 1,640 students as part of an NSF grant wasconducted at three South Florida metropolitan public universities. A quantitative analysis wasperformed which included a structural equation model (SEM) and a multigroup SEM. The