, American Society for Engineering Ed- ucation, and the Association of Technology, Management, and Applied Engineering. He teaches courses in manufacturing, welding, controls, and automation.Dr. Ismail Fidan, Tennessee Technological University Ismail Fidan is a tenured Full Professor at the College of Engineering of Tennessee Tech University. His research and teaching interests are in additive manufacturing, electronics manufacturing, distance learn- ing, and STEM education. Fidan is a member and active participant of SME, ASME, IEEE, and ASEE. He is also the Associate Editor of IEEE Transactions on Components, Packaging, and Manufacturing Technology
testing will be conducted to assess a) change in retention between courses and b)change in student problem-solving and design skills.BackgroundMany sources have made the case for reforming engineering education to reflect modern trends.Most notably, a recent National Academy of Engineering (NAE) report found that2 Engineering education must avoid the cliché of teaching more and more about less and less, until it teaches everything about nothing. Addressing this problem may involve reconsideration of the basic structure of engineering departments and the infrastructure for evaluating the performance of professors as much as it does selecting the coursework students should be taught.The report also stressed the importance of teaching
AC 2012-2992: CREATIVITY FOR ENHANCING THE TECHNOLOGI-CAL LITERACY FOR NON-SCIENCE MAJORSDr. Robert M. Brooks, Temple University Robert Brooks is an Associate Professor of civil engineering at Temple University. He is a fellow of ASCE. His research interests are engineering education, civil engineering materials, and transportation engineering.Jyothsna K. S., Jyothsna K. S., Department of English, St.Joseph’s College, Bangalore, eecured a gold medal for the high- est aggregate marks in the Post Graduate English Literature course at St.Joseph’s College (autonomous). K. S. has been working for the Department of English, St.Joseph’s College for almost two years now, teaching both undergraduate and postgraduate
Professor at California Polytechnic State University at San Luis Obispo in the Department of Mechanical Engineering teaching dynamics, vibrations and con- trols. He is involved in several undergraduate and master’s level multidisciplinary projects and interested in engineering education research. Page 25.1419.1 c American Society for Engineering Education, 2012 USING AUTOMOTIVE SAFETY IN A SERVICE-LEARNING PROJECT FOR UNDERGRADUATE DYNAMICSAbstractAutomotive safety was used as a service-learning, overarching term-long theme in anundergraduate Engineering Dynamics course. The service
not be applied towards their degrees. The primaryreason for this was the limited availability of courses at KTH that our students could take. Mostof the courses during the KTH fall and spring semesters are in Swedish, and there is no capacityat VT to teach the students Swedish prior to arriving at KTH. Hence, the US students visitedKTH during the summer for beginning Swedish and undergraduate research, but these creditswere already satisfied by the German language courses at VT and several required courses atTUD that transfer as technical electives to VT. Hence, the US students could not make use oftheir credits earned at KTH.Lack of Compliance with the Bologna ProcessWhile the ministers for higher education across Europe have endorsed the
the College of DuPage, where he stayed until present. First, as an instructor in electro-mechanical technology and manufacturing technology and then as a coordinator in electronics technology. In addition to practical engineering experience, Rosul has significant teaching and research background. As a PI and Co-PI, Rosul has extensively worked with NSF on several grants and projects. Currently, Rosul serves as an ABET evaluator for IEEE society. Page 25.912.1 c American Society for Engineering Education, 2012 Manufacturing Workforce - Report on NSF-ATE Project Pertaining to
c American Society for Engineering Education, 2012 The iCollaborate MSE Project – 2012AbstractThis paper describes the progress to-date on the various components of the iCollaborateMSE [Materials Science and Engineering] project, as well as the preliminary assessmentdata that has been collected. The overall objectives of the research are to measure ifimprovements in student learning outcomes, student engagement, and course completionrates are possible if the structure in a basic materials engineering course is transformedfrom primarily deductive practice to an Information Communication Technology (ICT)enabled inductive teaching and learning environment. There are two major componentsof this research project. The first
AC 2012-4226: EMPHASIZING CORE CALCULUS CONCEPTS USINGBIOMEDICAL APPLICATIONS TO ENGAGE, MENTOR, AND RETAINSTEM STUDENTSDr. John D. DesJardins, Clemson University John DesJardins received his Ph.D. in bioengineering from Clemson University in Dec. 2006 and has worked for more than 15 years as a biomechanical research engineer. He has co-authored more than 150 peer-reviewed journal and conference publications in the areas of biomechanics, biomaterials tribology and mechanical testing, and is the director of the Laboratory of Orthopaedic Design and Engineering at Clemson University. He currently leads or participates in many multi-disciplinary research teams on projects funded through NASA, DoD, DoT, NSF, biomedical
AC 2012-4919: FRESHMAN AND SOPHOMORE INTRODUCTION TOMANUFACTURING-RELATED ENGINEERING HANDBOOKS USING KNOVELDATABASESProf. Julia L. Morse, Kansas State University, Salina Julia Morse is Associate Professor and Program Coordinator for mechanical engineering technology at Kansas State University, K-State, Salina. She teaches lecture and laboratory courses in the areas of man- ufacturing, automation, and computer-aided design. Morse earned a B.S.I.E. from the University of Ten- nessee, Knoxville, and a M.S. in manufacturing systems engineering from Auburn University, where she also worked with Auburn Industrial Extension Service. Her work in industry includes engineering ex- perience in quality control, industrial
that they need to work harder; boosted their self-esteem when they gotgood grades during the program; got more confident in freshman year classes; and founda study buddy. The second and third groups agreed that the mathematics and chemistryclasses served as a good review before the beginning of fall semester. Some studentsfrom the second group stated that they knew what to expect in college, and the scienceclass helped in learning how to write laboratory reports. The third group’s students statedthat the study skills class was good in teaching them time management. Page 25.711.9Discussion:In examining the results obtained, it was indicated that
these interactions.IntroductionThe Department of Civil and Environmental Engineering at Villanova University has recentlyrevised its curriculum. In particular, the Department reduced the number of credits in thecurriculum by consolidating several related topics into a few key courses. One of these courses,Civil Engineering Fundamentals, is taught in the fall semester of the sophomore year and servesas an introduction to the engineering program. The course includes three 50-minute lectures andone 3-hour laboratory session per week over a 14-week semester. There are two sections of thecourse, each of which has between 20 and 30 students. Fundamentals is designed to helpsophomores develop many analytical, interpretive and field-based skills and
GC 2012-5626: ENGINEERING EDUCATION AROUND THE WORLD: ASTUDENT PERSPECTIVEDr. Jennifer DeBoer, SPEED Page 17.22.1 c American Society for Engineering Education, 2012 Engineering Education around the World: The student experience from the students’ perspectives Jennifer DeBoer (Massachusetts Institute of Technology) Teaching and Learning Laboratory Massachusetts Institute of Technology Cambridge, USA
scheduled days. The courses selected for the study at the institution areidentified as i) a freshman design class teaching computer-aided design, ii) a sophomoreintroductory circuits laboratory, iii) a junior design class in controls and electronics, and iv) asenior capstone project class.On the day of the module delivery, the case study was first introduced to students through a shortpresentation by the instructor assigned to this role during which the one-page case study wasread aloud. It is also suggested to include a brief, relevant video clip of a key interview or newssegment on the subject to supplement the text. Whenever possible, contrasting viewpoints bydifferent stakeholders can also be expressed through the selection of video clips to
. Work Experience: Utah State University, Jan. 2010 to present, instructor for ETE 1020 energy, power, transportation systems control technology exploration of the concepts and processes relating to the control and automation (both hard and programmable) of technical systems in the areas of energy and power, transportation, and agricultural and related biotech- nologies. California University of PA, Jan. 2008 to May 2009, Teaching Assistant. Assisted the professor in class preparation, lesson plans, and distribution of materials Also gain teaching experience by lecturing the class section which deals with programming robots. Managed a laboratory, which allowed students to complete experiments. AT&T Broadband
Introduction to Engineering. Cottleville, MO: Great Lakes Press.10. Integrated Teaching and Learning Laboratory, College of Engineering and Applied Sciences. (2000). Introductory Engineering Design: A Project-Based Approach. Boulder, CO: University of Colorado at Boulder. Accessed at http://itll.colorado.edu/index.php/courses_workshops/geen_1400/resources/textbook/11. Design Squad: Teacher’s Guide. (2010) Public Broadcasting Service. Accessed at: http://pbskids.org/designsquad/parentseducators/guides/teachers_guide.html12. Committee on Public Understanding of Engineering Messages. (2008). Changing the Conversation: Messages for Improving Public Understanding of Engineering. Washington, DC: National Academy of
AC 2012-3302: SMART CONTROL OF POWER ELECTRONIC CONVERT-ERS IN PHOTOVOLTAIC SYSTEMSMr. Ahmed Mohamed, Florida International University Ahmed Mohamed (El-Tallawy) was born in Minia, Egypt, in 1984. He received his B.Sc. degree from the faculty of engineering, Minia University, Minia, Egypt, in 2006. From 2006 to 2009, he was a Re- search/Teaching Assistant in the faculty of engineering, Minia University. He received a M.Sc. degree from the faculty of engineering, Minia University, Minia, Egypt in 2009. He is currently a Research As- sistant in the Electrical and Computer Engineering Department, College of Engineering and Computing, Florida International University, Miami, Fla., USA. His current research interests are
Design (SUTD). Wood completed his M.S. and Ph.D. degrees in mechanical engineering (Division of Engineering and Applied Science) at the California Institute of Technology, where he was an AT&T Bell Laboratories Ph.D. Scholar. Wood joined the faculty at the University of Texas in Sept. 1989 and established a computational and experimental laboratory Page 25.752.1 c American Society for Engineering Education, 2012 for research in engineering design and manufacturing. He was a National Science Foundation Young Investigator, the Cullen Trust for Higher Education Endowed Professor in
, computational fluid dynamics (CFD), microfluidics/lab on chip, and energy research.Dr. Hyun W. Kim, Youngstown State University Hyun W. Kim is a professor of mechanical engineering in the Department of Mechanical and Indus- trial Engineering at Youngstown State University. He has been teaching and developing the Thermal Fluid Applications course and the companion laboratory course for the past few years. He is a registered Professional Engineer in Ohio and is currently conducting applied research in hydraulics and micro gas turbines. He helps the local industry and engineers with his expertise in heat transfer and thermal sciences. Kim received a B.S.E. degree from Seoul National University, a M.S.E. from the University of
of Texas in Sept. 1989 and established a computational and experimental laboratory for research in engineering design and manufacturing. He was a National Science Foundation Young Investigator, the Cullen Trust for Higher Education Endowed Professor in Engineering, and University Distinguished Teaching Professor at The University of Texas, Austin.Dr. Richard H. Crawford, University of Texas, Austin Richard H. Crawford is a professor of mechanical engineering at the University of Texas, Austin, and is the Temple Foundation Endowed Faculty Fellow No. 3. He received his B.S.M.E. from Louisiana State University in 1982, and his M.S.M.E. in 1985 and Ph.D. in 1989, both from Purdue University. He joined the faculty of
to work through all of the lessons themselves and began to devise implementationplans for their own classrooms. During the second week, they were invited to bring two studentsas part of a teaching laboratory. During this week, the teachers were responsible for teaching themodules to the students in a highly supported environment, surrounded by SENSE IT staff, whowere available to assist with any questions or concerns. This gave the teachers the opportunity toreview the materials, as well as to see how they work with students, thus enabling them to betterprepare for full classroom teaching.The SENSE IT teachers also participated in four full-day professional development workshopsduring the school year. The workshops gave the teachers an
graduate with a goodengineering degree without ever sketching something out and physically making it in a laboratory or workshop.After several experimental courses and much student feedback a new course was developed and finally approved asmandatory for all first year engineers. This was offered every fall and spring starting in 2003. A new feature was theincorporation of two 5-6 week ‘Engineering Practice’ lab sessions spread across the seven departments in theengineering college [14]. In fall 2011 as result of other associated curriculum changes it became possible to offerthis course in the fall semester for the whole entering class of 331 students. Several new features were able to beincorporated exploiting Project-Based Learning with ‘Virtual
for prototyping and debugging.Educational platforms currently available are in the form of microcontroller populated boards(hard core processors) or programmable logic device boards. In the later, students can instantiatea configurable, soft core processor comparable to the one provided in the former. This leaveseducators with two distinct options for teaching embedded systems and low level programmingcourses (Note: there can be hard core processors within a programmable logic device, howeverthis paper is referring to a hard core processor as a stand-alone component).This paper is a dialogue between two faculty members, one defending design using hardcomponents, assembly and laboratory testing, and the other using soft components
; protecting structures fromsettlement and other damage; and preventing groundwater contamination. The topics covered inthe class include soil classification, permeability and seepage, volume changes, effective stress,strength and compaction.Innovation and EfficiencyIn EGR 340 a variety of strategies were used to balance efficiency and innovation in theclassroom. The educational strategies that emphasized efficiency included lecture, discussion, Page 25.351.5soil testing laboratories following standard procedures, peer teaching, problem sets, case studiesand other standard practices in engineering education. The classroom practices focusing
Page 25.576.5The course is taught in a studio format with two, two hour blocks per week. An instructor, agraduate teaching assistant and four undergraduate assistants are assigned for each section. Thecourses are taught using active learning and use a team model. Students are assigned tostructured teams of four students and perform in-class activities and projects within these teams.The classrooms used by the courses have been specifically designed to promote teaming withinthe courses.For the fall 2011 semester, two sections of the course were modified to incorporate the use ofNational Instruments LabVIEW, a graphical programming environment, along with the MyDAQdata acquisition system to explore its use for both teaching introductory
Program Coordinator and Graduate Advisor for the Learning Technologies Program. She develops and teaches graduate courses on new media design, production, and research. Her research interests center on educational uses of new media and other emerging technologies, particularly the impact of such technologies on teaching and learning, and the design of new media enriched interactive learning environments for learners at all age levels. She has published in leading educational technology research journals and presents regularly at national and international technology conferences. She also serves on a number of editorial boards for research journals in the field of technology.Mitchell A. Thornton Ph.D., P.E., Southern
engineering training with an emphasis on engineeringdesign, systems thinking, and sustainability. Our goal is to train this engineering versatilist. Webelieve that exposure to engineering design can help students develop their problem solvingskills, teach them to better synthesize information, and exercise skills required to integrate andanalyze knowledge. Consequently, courses in engineering design represent the spine (boldedcourses with a white background in Figure 1) of our integrated engineering curriculum.2Students are first exposed to engineering design during their freshman year with reverseengineering modules in our Introduction to Engineering course. Then, sophomore through senioryear, students enroll sequentially in our six-course design
AC 2012-3061: USE OF CASE STUDIES AND A SYSTEMATIC ANALY-SIS TOOL TO ENGAGE UNDERGRADUATE BIOENGINEERING STU-DENTS IN ETHICS EDUCATIONDr. Alyssa Catherine Taylor, University of Washington Alyssa C. Taylor is a lecturer in the Department of Bioengineering at the University of Washington. She received a B.S. in biological systems engineering at yhe University of California, Davis, and a Ph.D. in biomedical engineering at the University of Virginia. Taylor’s teaching activities are focused on de- veloping and teaching core introductory courses and technical labs for bioengineering undergraduates, as well as coordinating the capstone design sequence for the BIOEN Department at the University of Washington. Taylor
favorite. His survey titled ”Small Ramsey Numbers,” which is a regularly updated living article at the Electronic Journal of Combinatorics, became a standard reference in this area. He teaches mostly theory-oriented courses, including very popular courses on cryptography, both at undergraduate and graduate levels. His recent work on applied cryptography led to joint projects with the Computer Engineering Department.Dr. James R. Vallino, Rochester Institute of Technology Jim Vallino has academic and industrial experience across a broad range of engineering disciplines. His academic training includes a B.E. in mechanical engineering, a M.S. in electrical and computer engineer- ing, and after more than 16 years in industry
Gilbuena, Oregon State University Debra Gilbuena is a Ph.D. candidate in the School of Chemical, Biological, and Environmental Engi- neering at Oregon State University. She currently has research focused on student learning in virtual laboratories. Gilbuena has an M.B.A., an M.S., and four years of industrial experience, including a po- sition in sensor development, an area in which she holds a patent. Her dissertation is focused on the characterization and analysis of feedback in engineering education. She also has interests in the diffusion of effective educational interventions and practices.Dr. John L. Falconer, University of Colorado, BoulderDr. David L. Silverstein, University of Kentucky David L. Silverstein is
Engineering Laboratory. The highschool students purchase supplies for the mousetrap car from Home Depot and must keeptheir budget to $10. At night, students work on group projects that include designing andbuilding robots using LEGO Mindstorms NXT.To recruit students, we created a partnership between our College and five community-based out-of-school time programs in Southern California. By working with communityorganizations, we have reached highly motivated students who have a strong aptitude forscience and mathematics. Over the past 11 years, 233 students from 73 different highschools in the Greater Los Angeles Area have participated in SECOP. We have receivedover $500.000 in funding from foundations and engineering-based corporations