Research- Engineering Empathetic Engineers (E^3): Effects of the humanities on engineers' critical thinking and empathy skillsKeywords: Discourse Analysis, Interdisciplinary, Team Teaching, Post-secondary EducationTraditional disciplinary silos have separated engineering and the humanities, creating gaps inengineering students’ skills. Technical knowledge and aptitude have long been a mainstay inengineering education, whereas critical thinking, empathy, and ethical reasoning have been keyin the humanities. In an ever complex and interrelated world, society's grand challenges call forproblem-solving that provides technical innovations while considering and understanding thepeople involved and affected by that innovation. A holistic
University, San Luis Obispo John Chen is a professor of mechanical engineering. His interests in engineering education include con- ceptual learning, conceptual change, student autonomy and motivation, lifelong learning skills and behav- iors, and non-cognitive factors that lead to student success.Dr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since
, and inclusion and diversity. She has been honored by the American Society of Engineer- ing Education with several teaching awards such as the 2004 National Outstanding Teaching Medal and the 2005 Quinn Award for experiential learning, and she was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland)tephanie Farrell is Professor and Founding Chair of Experiential Engineering Education at Rowan University (USA) and was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland).Dr. Kauser Jahan P.E., Rowan University Kauser Jahan, is a Professor of Civil and Environmental Engineering at Rowan University. She received her B.S.C.E. from the
accomplishments have been highlighted through a number of awards and articles, including highlights in USA Today, Upscale, and TIME Magazine, as well as being named a MIT Technology Review top young innovator of 2003, recognized as NSBE Educator of the Year in 2009, and receiving the Georgia-Tech Outstanding Interdisciplinary Activities Award in 2013. In 2013, she also founded Zyrobotics, which is currently licensing technology derived from her research lab and has released their first suite of educational technology products. From 1993-2005, Dr. Howard was at NASA’s Jet Propulsion Laboratory, California Institute of Technology. Following this, she joined Geor- gia Tech in July 2005 and founded the Human-Automation Systems Lab
of the Cambridge Handbook of Engineering Education Research (CHEER) published by Cambridge University Press, New York, NY. Dr. Johri earned his Ph.D. in Learning Sciences and Technology Design at Stanford University and a B.Eng. in Mechanical Engineering at Delhi College of Engineering.Dr. Lori C. Bland, George Mason University Lori C. Bland, Ph.D., is an associate professor at George Mason University. She teaches courses in edu- cational assessment, program evaluation, and data-driven decision-making. Bland received her Ph.D. in Educational Psychology from the University of Virginia. Her current research focuses on identifying, ex- amining, and assessing learning and professional outcomes in formal and informal
Paper ID #9848Research Experience for Teachers Site: A Work-in Progress ReportDr. Vikram Kapila, Polytechnic Institute of New York University VIKRAM KAPILA is a Professor in the Department of Mechanical and Aerospace Engineering at NYU Polytechnic School of Engineering. His research interests are in control system technology, mechatronics, and K-12 STEM education. He directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experience for Teachers Site, and an NSF funded GK-12 Fellows project. He received NYU-Poly’s 2002, 2008, and 2011 Jacobs Excellence in Education Award
En- gineering from the Department of Agricultural and Biological Engineering at Purdue University. She is a member of Purdue’s Teaching Academy. Since 1999, she has been a faculty member within the First- Year Engineering Program, teaching and guiding the design of one of the required first-year engineering courses that engages students in open-ended problem solving and design. Her research focuses on the development, implementation, and assessment of modeling and design activities with authentic engineer- ing contexts. She is currently a member of the educational team for the Network for Computational Nanotechnology (NCN).Dr. Michael T. Harris, Purdue University, West Lafayette Michael ”Mike” Harris is the
Paper ID #41292Board 303: Implementing Oral Exams in Engineering Classes to PositivelyImpact Students’ LearningDr. Huihui Qi, University of California, San Diego Dr.Huihui Qi is an Associate Teaching Professor in the Department of Mechanical and Aerospace Engineering at the University of California San Diego.Dr. Carolyn L Sandoval, University of California, San DiegoProf. Curt Schurgers, University of California, San DiegoDr. Marko Lubarda, University of California, San DiegoDr. Alex M. Phan, University of California, San DiegoDr. Saharnaz Baghdadchi, University of California, San DiegoDr. Maziar Ghazinejad, University of California, San
that the output is not the most ideal solution, to isolate whichinput codes are needed to be corrected, and to iterate the investigation to fix the error. Twentystudents (ntext = 9, ngraphic = 11) from the laboratory component of a calculus-based introductoryphysics course consented to participate in this study. Four think-aloud interviews wereconducted to ensure that the questions were eliciting the desirable debugging practices understudy.Box 1Sample text-based debugging question. We write a code to plot the points (1.5, 2.5), (2.5, 4.5), (3.5, 7.2) and (4.6, 10.3), as follows: import matplotlib.pyplot as plt point1 = (1.5, 2.5) point2 = (2.5, 4.5) point3 = (3.5, 7.2) point4 = (4.6, 10.3) plt.plot(point1, point2, point3, point4
componentof the Urban STEM Collaboratory, providing priority consideration to students within the cohortfor STEM Ambassador positions. The program engages undergraduate students in paid positionssupporting STEM teaching and learning with local school districts and community organizations.Ambassadors develop strong leadership and communication skills and deeper connections totheir disciplines all while getting paid and making a positive impact in the community. Theprogram has been successful in creating connections and a sense of community for theAmbassadors that has led to positive outcomes in both academic and career pursuits. Theleadership team is now exploring opportunities to extend these successes with other populationswhere a strong sense of
theireducation, complete their degrees, and prepare for a career and/or graduate studies; 3) toincrease the retention rate and monitor each supported student’s progress to ensure theircompletion of degree requirements within a reasonable time frame; 4) to encouragestudents to graduate and continue their education in graduate school, or obtainemployment in local industry, such as a nearby national laboratory; and 5) to engagescholarship recipients in college activities and encourage college service career options,such as teaching and research.The indicators measuring the effectiveness of the project are: 1) increasing the degreeprogress rate; this means that scholarship recipients will successfully complete aminimum of 12 credit hours towards the degree
background in English, philosophy, science, and all levels of education, Heather is currently a doc- toral student in curriculum and instruction and educational psychology. She is interested in psychological barriers affecting retention and success for students. Having been raised by an engineer, this project is close to her heart. c American Society for Engineering Education, 2016 Promoting Inclusive Engineering Identities in First-Year Engineering CoursesIntroductionIn order to cultivate a diverse and inclusive engineering student population, engineeringprograms must purposefully teach engineering students to identify as engineers, appreciatediversity, and work
University. At Hofstra she teaches courses in mechanical engineering, materials science and biomechanics. In addition to her research in engineering education, Dr. Goldberg studies the biomechanics of human movement, focusing on gait rehabilitation. She is a member of ASEE, the Society of Women Engineers and the American Society of Biomechanics.Dr. Jennifer Andrea Rich, Hofstra University Jennifer A. Rich is Associate Professor of Writing Studies and Composition at Hofstra University. She has published widely in writing studies, film, Shakespeare, and popular culture. She has recently published a book-length guide to the philosophy of Theodore Adorno.Dr. Amy M. Masnick, Hofstra University Dr. Amy Masnick is an Associate
involve the REU participants in the UAV related cutting-edge researchprojects. The UAV Lab at Cal Poly Pomona provides a suitable research environment for theparticipants [1]. References 1 and 2 provide the details on some of the projects that the participantswere involved in. The participants are provided with an opportunity to gain knowledge on theapplication of engineering and computer science to UAV technologies, acquire skills necessary toconduct meaningful research, understand research process, and learn laboratory techniques. Inmost cases, the participants tested the algorithms they developed in simulation and flight tests. Forexample, Figure 1 shows the concept of operation for the obstacle detection and avoidance usingoptical flow for a
company and Total Dynamics LLC a software company. He is also on the board of directors of Developing World Technologies, a company started by former students of the capstone class that he teaches. His interests include engineering and entrepreneurship pedagogy and assessment, technology development and clinical applications of biomedical instrumentation.Dr. Shane A. Brown P.E., Washington State University Dr. Shane Brown conducts research on cognition and conceptual change in engineering. He received his bachelor’s and Ph.D. degrees from Oregon State University, both in Civil Engineering. His Ph.D. degree includes a minor in Science and Mathematics Education. His master’s degree is in Environmental Engineering from
project [14], we employed a longitudinal mixed methods study design toidentify the most common and severe stressors experienced by a cohort of students at oneinstitution. Drawing from the results of Year 1 of study and a review of the literature on graduatestudent stressors, we developed in Year 2 the Stressors for Doctoral Students Questionnaire forEngineering (SDSQ-E) and administered it twice, in fall 2022 [15] and in spring 2023. TheSDSQ-E measures the severity and frequency of stressors including advisor-related stressors,class-taking stressors, research or laboratory stressors, campus life and financial stressors, andidentity-related or microaggression-related stressors. In this update to the final year of ourproject, we will present a high
; Mathematics), Baton Rouge Community College 9/2007 – 4/2011 Supervisory Mechanical Engineer, Southern Regional Research Center, Louisiana 8/2000 – 9/2007 Research Assistant, Louisiana State University, Mechanical Engineering Department 8/2005 – 7/2007 National Science Foundation Fellow, K-12 Program, Louisiana State University (NSF GK-12) 1/2001 – 12/2005 Teaching Assistant, Louisiana State University, Mechanical Engineering Department 10/1996 – 8/2000 Teaching Instructor, Arab Academy for Science and Technology and Maritime Trans- port, Egypt 3/1995 – 10/1996 Assistant Barge Engineer, Santa Fe International Drilling Company Relevant Publications: James Rodgers, Karim Elkholy, Xiaoliang Cui, Vikki Martin, Michael Watson
applications, and avionics systems. At CSULB she expanded her research interests to computing and engineering education and diversity, equity, and inclusion. Natural Sciences and Engineering Research Council of Canada, Fonds de recherche du Qu´ebec, National Science Foundation, and the Center for Inclusive Computing have funded Dr Trajkovic’s work. Her work was recognized by three Best Paper Awards and the Teaching Excellence Award at Concordia University, Montreal.Dr. Gino Galvez, California State University, Long Beach Dr. Gino Galvez is an Associate Professor in the Department of Psychology at California State University Long Beach. He has played key roles as an investigator or lead evaluator on several grant-funded
is co-director of the NSF Science-Technology Center for Integrated Quantum Materials (CIQM) based at Harvard, MIT, Howard, and MOS, and she has othe NSF awards and subawards in areas of biological imaging, scalable nanomanufacturing, and undergraduate training. Alpert teaches an annual year-long Research Communication Laboratory seminar at MIT’s Research Laboratory of Electronics, and provides science communication coaching and professional development to students and faculty at several univer- sities. Alpert co-founded the NSF Nanoscale Informal Science Education Network in 2005, which has since broadened into a National Informal Science Education Network. She is a member of the Section Y Steering Group of the
teachers. Dr. Andrei has published over 100 ar- ticles in computational electronics, electromagnetics, energy storage devices, and large scale optimization methods.Dr. Hector Erives, University of Texas at El PasoDr. DeAnna Bailey, Morgan State University DeAnna Bailey received her B.S (2003) in electrical engineering and D.Eng (2013) from Morgan State University, Baltimore, MD. In 2017, she joined the Electrical and Computer Engineering Department at Morgan State University where she teaches circuit and signal processing classes. Her interest is de- veloping innovative technology that uses artificial intelligence to facilitate and enhance the learning of engineering concepts and principles.Dr. Willie L Thompson II
COVID, we will elaborate more on how these commonalities wereembedded into the REM program design.Timeline of the PartnershipThere was a lot of adapting from the first pilot of the REM program in 2019 to its present form in2023 (see Figure 1). The original pilot in 2019 had only 3 REM students and 3 REM teachers. Figure 1: A timeline of the CISTAR – NSBE SEEK partnership.After the successful pilot in summer of 2019, the next year had COVID shutting down all in-person summer programs. NSBE SEEK was able to pivot to virtual programs in 2020. Withuniversity laboratories closed and having predominantly experimental research projects, it tooklonger for CISTAR to pivot and offer the program virtually. Thus, in the summer of 2020
, faculty teaching practices and intersections of motivation and learning strategies. Matusovich has authored a book chapter, 10 journal manuscripts and more than 50 conference papers.Dr. Deirdre-Annaliese Nicole Hunter, La Gran Familia De Gregory Dr. Deirdre Hunter conducts engineering education research at Virginia Tech and is the Director of U.S. Development at La Gran Familia de Gregory in Chihuahua, Mexico. Her current research is in the areas of problem-based learning facilitation and teaching metacognition. Her research strengths include research design and implementation using qualitative methods. She has a Ph.D. in Engineering Education from Virginia Tech and a B.S. in Mechanical Engineering from Syracuse
Paper ID #18020Highlighting and Examining the Importance of Authentic Industry Examplesin a Workforce Development Certificate ProgramDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of
. Experimental Design and Data Collection3.1. Participants43 participants gave informed consent to take part in the study. 22 participants were engineeringstudents of various majors; the remaining 21 participants did not have formal education inengineering. 7 participants were excluded from the analyses due to technical problems duringEEG data recording, or excessive noise in the recorded data. In total, 36 participants (19engineering, 17 nonengineering) were included in the analyses.3.2. ProcedureUpon arriving to the laboratory participants were introduced to the research team, screened foreligibility criteria and asked to read the consent form and decide whether or not they agreed toparticipate in the study. Participants were next taken to the
Paper ID #16519Research and Instructional Strategies for Engineering RetentionDr. Claudia J Rawn, University of Tennessee, Knoxville Claudia Rawn is an Associate Professor in the Materials Science and Engineering Department at the University of Tennessee, Knoxville. She is also the Director of the Center for Materials Processing. Prior to joining the University of Tennessee full time she was a Senior Research Staff Member in the Materials Science and Technology Division at Oak Ridge National Laboratory and a Joint Faculty Member in the University of Tennessee’s Materials Science and Engineering Department. She received her
based on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 technical papers in refereed journals and conference proceedings–over 60 with students. He has authored three engineering texts on classical controls
Paper ID #41608Board 278: Faculty and Staff Ideas and Expectations for a Culture of Wellnessin EngineeringMs. Eileen Johnson, University of Michigan Eileen Johnson received her BS and MS in Bioengineering from the University of Illinois at Urbana-Champaign. She previously worked in tissue engineering and genetic engineering throughout her education. She is currently pursuing her PhD in Biomedical Engineering at the University of Michigan. After teaching an online laboratory class, she became interested in engineering education research. Her current research interests are in engineering student mental health & wellness
, especially those who commute or live off-campus. The creation of study groups isencouraged, as well as supervision of students to ensure completion homework [7]. Within theselearning-centers, effective retention initiatives that supported student diversity in learning thatmay require different approaches to college teaching, even in math and sciences [10]. Preliminary evaluations of students found that while most students prefer the new approaches tolearning, women and some minority students demonstrated differences in preferred learningstyles as assessed by the Myers-Briggs Inventory [5]. Additionally, when considering theexternal obstacles and characteristics of NT students, it cannot be assumed that students arelargely isolated from worldly
Paper ID #29299Educating the Workforce in Cyber & Smart Manufacturing for Industry 4.0Dr. Mathew Kuttolamadom, Texas A&M University Dr. Mathew Kuttolamadom is an associate professor in the Department of Engineering Technology & In- dustrial Distribution and the Department of Materials Science & Engineering at Texas A&M University. He received his Ph.D. in Materials Science & Engineering from Clemson University’s Int’l Center for Au- tomotive Research. His professional experience is in the automotive industry including at the Ford Motor Company. At TAMU, he teaches Mechanics, Manufacturing and