requirecooperation among experts from many fields. Successful leaders must harness the diversecapabilities of teams composed of these experts and be technically skilled. Undergraduateengineering students can fill this need by learning how to be effective leaders during theirformation as engineers. Unfortunately, many engineering students graduate with littledevelopment of leadership skills; engineering educators do not currently have asufficient understanding of how engineering students develop into leaders.This NSF ECE supported project seeks to improve educators’ understanding of the interactionbetween leadership and engineering identities in the formation of undergraduate engineers. Thiswork postulates that a cohesive engineering leadership identity
Student Peer Mentorship in Academia,” Mentor. Tutoring Partnersh. Learn., vol. 27, no. 5, pp. 549–576, 2019, doi: 10.1080/13611267.2019.1686694.[14] M. Jennings, “A Review of the State of LGBTQIA+ Student Research in STEM and Engineering Education,” p. 24.[15] N. Kalkunte, M. Nagbe, and M. Borrego, “Climate Survey Report,” Cockrell School of Engineering, Feb. 2022. [Online]. Available: https://cockrell.utexas.edu/images/pdfs/CockrellSchool-ClimateSurveyReport2022.pdf[16] N. H. Choe, M. Borrego, L. L. Martins, A. Patrick, and C. C. Seepersad, “A Quantitative Pilot Study of Engineering Graduate Student Identity,” in 2017 ASEE Annual Conference & Exposition Proceedings, Colum, 2017.[17] relating to diversity, equity
multilingual writers inengineering and the potential of corpus-based writing instruction, the current study creates alanguage module in a form of tutoring intervention and assesses its effectiveness on fourmultilingual graduate students in Mechanical Engineering. Using a genre- and discipline-specific corpus consisting of 150 published empirical articles and 32 graduate students’manuscripts in Mechanical Engineering, the tutoring presents authentic and meaningful textsas linguistic reference. In so doing, the instructor can be saved from make discipline-inappropriate choices such as choosing an expression common in general academic Englishbut infrequent in Mechanical Engineering. By comparing sentence-level features betweenexpert and student writing
sociocultural dimensions of engineering education.Andrew Elby, University of Maryland, College Park Andrew Elby’s work focuses on student and teacher epistemologies and how they couple to other cognitive machinery and help to drive behavior in learning environments. His academic training was in Physics and Philosophy before he turned to science (particularly physics) education research. More recently, he has started exploring engineering students’ entangled identities and epistemologies.Dr. Ayush Gupta, University of Maryland, College Park Ayush Gupta is Assistant Research Professor in Physics and Keystone Instructor in the A. J. Clark School of Engineering at the University of Maryland. Broadly speaking he is interested in
undergraduate research programming was thoroughly disrupted due to the COVID-19pandemic, it became evident that incoming graduate students may not have had the opportunityto fully prepare for the changes experienced in the first semester of graduate school. To ease thistransition, the Center for Nanoscale Science, a National Science Foundation Materials ResearchScience and Engineering Center (NSF-MRSEC) at Penn State University, developed theGraduate Research Experience and Transitioning to Grad School (GREaT GradS) programinitially for the summer of 2021 as a 6-week, graduate school summer foundational program forincoming students in disciplines spanning engineering, materials science, chemistry, and physics.After a successful pilot in 2021, the
returning students may feel out of place or unwelcomedin their graduate programs1, 5. An earlier qualitative study of engineering doctoral returners bytwo members of our team7 supports these findings and suggested returners face a number ofcosts, including those related to finances, balance of work and personal responsibilities, theirlevel of academic preparedness, and adapting to the cultural environment of engineering PhDprograms.Despite these challenges, having extensive prior work experience before pursuing PhD workmay prove to be valuable for returners’ academic work. Returners have a wide range of pastpersonal and professional experiences, which may include work in education, industry,government, or the military, that can inform their
first-generation status [10], [11], [12]. Much of the HSI STEMliterature focuses on undergraduate students’ outcomes and experiences, and there is a need tostudy STEM pedagogies that support student success at HSIs [13].This paper focuses on a pilot PD program for engineering graduate students that wasimplemented at an HSI for graduate students to build their knowledge, beliefs, and confidence increating inclusive learning STEM environments. This paper will describe the context andstructure of the PD program, followed by preliminary qualitative and quantitative results fromthe first year of the program. The data collection and analysis focused on understanding theprogram’s impacts on the engineering graduate students' confidence in and beliefs
Minnesota, Dulut ©American Society for Engineering Education, 2025 Experiences in Piloting a Program for Implementing High Impact Practices with Limited ResourcesAbstractIt is known that low-income, first-generation, and underrepresented students in engineering andcomputer science have rates of retention and graduation that lag behind their peers. A growingbody of research has identified a range of high-impact practices and exemplar programs thathave been successful in improving outcomes for these at-risk populations. Some areas that thesepractices seek to address include: financial need, academic preparation, sense of community,confidence, and professional identity. The challenge of
themselves as engineers and the work that engineering entails.The overarching goal of our research agenda is to facilitate future research aimed atunderstanding how working in teams influences the emergence of professional identity andcapability among undergraduate engineering students. The purpose of this study is to advancedevelopment of a tool, the Within-team Task Choice Survey (WTCS), for collecting data abouthow students spend time, select tasks, and envision their role in the context of a team-baseddesign project.Literature Review: Team-based learning in engineering designWidely used as a pedagogical strategy for developing technical skills and professionaldispositions, team-based learning is commonly leveraged in design courses in chemical
has emerged as a core skill for thesuccess of new graduates and career growth. While the leadership studies field enjoys a broadliterature base, there is concern that many leadership development efforts have not demonstratedquantitatively substantive impacts on their students [9]. Some suggest this may be due to thecomplex, individual, and dynamic nature of leader development [10].IdentityOne approach that has emerged to meet the challenges of leader formation is identity (how onesees oneself, and is seen by others, in society). This approach has seen growth in the leadershipstudies field (e.g.,[3]) but is yet to be widely applied within an engineering context [11]. Thatsaid, some scholars interested in engineering leadership development have
that areunder-represented in a specific field of study or profession relative to their numbers in the generalpopulation. In this work, the fields of study used to define an under-represented minority include Science,Technology, Engineering and Mathematics (STEM). Under-represented minorities do not necessarily havesimilar characteristics such as culture (family, ethnic, social), motivations, perspectives etc. For example,a Hispanic student who grows up in the inner city, is on free or reduced lunch, and lives in a governmentsubsidized home often has little in common with a Hispanic student who is raised in a financially stablehousehold in the suburbs. Additionally, an under-represented minority with immigrant parents may beraised in a cultural
education. The presented findings emanate from the fourth phase of anextensive multiphase mixed-method research project. The project seeks to elucidate theimpediments that underrepresented students, particularly women, face in pursuing graduateengineering degrees and the potential solutions to overcome those barriers.Our methodology in this phase encompassed a comprehensive mixed-method survey, garneringresponses from over 600 undergraduate and graduate engineering students within the Faculty ofEngineering. Preliminary analyses revealed that the decision to pursue graduate studies isinfluenced by intersectional identity variables.In the sphere of engineering education, the pursuit of diversity, inclusion, and equity has longbeen recognized as
Paper ID #32883Engaging High School Students in Computer Science Through MusicRemixing: An EarSketch-based Pilot Competition and EvaluationDr. Roxanne Moore, Georgia Institute of Technology Roxanne Moore is currently a Research Engineer at Georgia Tech with appointments in the school of Mechanical Engineering and the Center for Education Integrating Mathematics, Science, and Computing (CEISMC). She is involved with engineering education innovations from K-12 up to the collegiate level. She received her Ph.D. in Mechanical Engineering from Georgia Tech in 2012.Dr. Sunni Haag Newton, Georgia Institute of Technology Sunni
Paper ID #27632Implications of Gamification in Learning Environments on Computer Sci-ence Students: A Comprehensive StudyMs. Leila Zahedi, Florida International University Leila Zahedi is a Ph.D. student in the School of Computing and Information Science (SCIS) at Florida International University. She has a Bachelor’s degree in Computer Engineering from the University of Is- fahan and two Master’s degrees in Information Technology Management from the University of Yazd and Computer Science from Florida International University. Her research interests include computer science education, quantitative data analysis, and data
the work of building the faculty and staff team, faculty development, the benefits andchallenges of the organizational structure, specific elements of curricular and pedagogicalinnovation, operational structures and decision making, etc.II. METHODSThis paper is a descriptive case study detailing the visioning and building of Wake ForestEngineering. It is written from the emic perspective of the Founding Chair who happens to alsobe an engineering education research scholar. This descriptive case study offers a chronologicalaccount of key activities that impacted the student experience, including (1) department vision,mission, identity, (2) curriculum structure and development, (3) student advising, (4)pedagogical strategies, (5) integrative
stream at Queen’s University. Proceedings of the Canadian EngineeringEducation Association. DOI: 10.24908/pceea.v0i0.3943Tonso, K. (2006a) Teams that work: campus culture, engineer identity, and social interactions.Journal of Engineering Education 95(1): 25-37.Tonso, K. (2006b) Student engineers and engineering identity: Campus engineer identities asfigured world. Cultural Studies of Science Education 1(2): 1-35.Valverde, K.L.C and Dariotis, W.M. (2019) Fight the Tower: Asian American Women Scholars’Resistance and Renewal in the Academy. Rutgers University Press. New Brunswick, New Jersey.Wang Y., Zhang, X., Khalkhal, F., Claussen S., and Biviano A. (2023) A quantitative analysis onteamwork behavior, disagreement, and their linkages to Students
] Case study: Ayesha and the Trade Show [14] – addressing invisibility and “old-boy 6 network” in workplace 7 Continue the case study from the previous week 8 Panel: Women in Engineering 9 No lecture. Students attend Women+ in Biomedical Engineering Lunches 10 Wrap-upReferences[1] M. J. Johnson and S. D. Sheppard, "Relationships between engineering student and faculty demographics and stakeholders working to affect change," Journal of Engineering Education, vol. 93, no. 2, pp. 139-151, 2004.[2] G. Lichtenstein, H. L. Chen, K. A. Smith, and T. A. Maldonado, "Retention and persistence of women and minorities along the engineering pathway in the United States
chance to do it yourself. Okay so [our university] started a course, we piloted it...which attempted to give that experience, hands on experience, guided towards innovation, to undergrads. And it’s a delightful thing...it is exactly what we need to inspire these [students].” (00:47:56–00:49:15)This quote provides another example of Leo seeing a problem and trying to solve it, with obviouscurricular implications for engineering education at his university.Lisa (Education)Lisa’s interview transcript narrative followed the overall structure of the interview protocol,connecting repeatedly back to interrelated themes of social justice, equity and inclusion,macroethics, fixing structural factors, and authenticity. We observed both
Computing Identity and Persistence Across Multiple Groups Using Structural Equation ModelingAbstractDespite the projected growth of computer and information technology occupations, manycomputing students fail to graduate. Studying students’ self-beliefs is one way to understandpersistence in a school setting. This paper explores how students' disciplinary identity sub-constructs including competence/performance, recognition, interest, and sense of belongingcontribute to academic persistence. A survey of 1,640 students as part of an NSF grant wasconducted at three South Florida metropolitan public universities. A quantitative analysis wasperformed which included a structural equation model (SEM) and a multigroup SEM. The
beliefs about math, English, science, and social studies. Other research interests of hers include the formation of career aspirations, the school- to-work transition, and the differential participation in science, technology, engineering, and math fields based on social identity groups such as gender and Racial/Ethnic identity.Dr. Nathalie Duval-Couetil, Purdue University at West Lafayette Nathalie Duval-Couetil is the Director of the Certificate in Entrepreneurship and Innovation Program, Associate Director of the Burton D. Morgan Center, and a Professor in the Department of Technology Leadership and Innovation at Purdue University. She is ©American Society for Engineering Education, 2023
Paper ID #28898Building Early Elementary Teacher Confidence in Teaching ComputerScience Through a Low-Cost, Scalable Research-Practitioner CollaborationJustin Lee Clough, University of Southern California Justin L. Clough is a PhD student at the University of Southern California studying Mechanical Engineer- ing; his advisor is Assad A. Oberai. He received his Bachelors of Science from the Milwaukee School of Engineering and Masters of Engineering from Rensselaer Polytechnic Institute, both in Mechanical Engineering. He holds a DOD:SMART scholarship and works closely with the AFRL/RQHV teams at Wright-Patterson
. After each lesson and after thelesson series, students completed a written reflection on what they had learned, totaling to fivereflections over the semester. Their responses will be explored with a thematic qualitativeanalysis to answer the research questions above. The lessons continue to be adapted to thiscontext and are being taught to all sections of the course this semester. A rollout to all incomingfirst-year engineering students is planned for the Fall of 2023, so this analysis is ongoing, and allconclusions drawn so far are from Fall of 2022 and are denoted as a WIP.Definition of EmpathyDuring a pilot study in the Fall of 2022, 59 first-year students in the honors sections of“Introduction to Engineering” at a large R1 university
?”; and coping and help-seeking behaviors (six questions), for example, “What resourcesand support are there on campus or in your department for students who are stressed?”.Participants were asked to describe any interactions with other students and faculty regardingmental health issues and to share any other additional information about engineering-relatedstress. The interview protocol was developed from the results of a quantitative surveyadministered at the same institution in the fall of 2017, which included metrics of stress, anxiety,depression, inclusion, and engineering identity, as well as an open-ended response opportunityfor participants to share additional thoughts [8]. The interview was piloted with three participantsexternal to the
Paper ID #37179Fostering Community at the Graduate Level: One University’s Student-ledApproachHaroula M. Tzamaras, Pennsylvania State University Haroula is a 3rd year PhD candidate studying human factors at Penn State and is the current president of GradWIE.Sierra HicksGabriella M. Sallai, Pennsylvania State University Gaby Sallai is currently a graduate student in the Mechanical Engineering department at Penn State. She is working under Dr. Catherine Berdanier in the Engineering Cognitive Research Laboratory (ECRL) studying the experiences of engineering graduate students. She received her Bachelor’s degree from
link these surveystogether. As a result, the student’s identity is not known, but the pre/post surveys can be linkedfor the same student. Three instruments (1-3, below) comprised the survey and tookapproximately 5-10 minutes to complete. Each section of the survey provided data tooperationalize study variables identified in the PEERSIST model (Fig. 1), namely, engineeringself-efficacy, engineering identity, institutional identity, and supports and barriers.(1) Engineering Self-Efficacy Beliefs. Three items comprised this variable, adapted for this studyfrom Lent et al. [19]: confidence to (1) pass all remaining technical courses in the engineeringmajor, (2) pass all remaining design courses in the engineering major, and (3) graduate with
. Bork and J.-L. Mondisa, “Engineering graduate students’ mental health: A scoping literature review,” Journal of Engineering Education, vol. 111, no. 3, pp. 665–702, 2022, doi: 10.1002/jee.20465.[13] Council of Graduate Schools, “Completion and Attrition in STEM Master’s Programs: Pilot Study Findings.” Council of Graduate Schools, 2013.[14] G. C. Fleming et al., “The fallacy of ‘there are no candidates’: Institutional pathways of Black/African American and Hispanic/Latino doctorate earners,” Journal of Engineering Education, vol. 112, no. 1, pp. 170–194, 2023, doi: 10.1002/jee.20491.[15] E. Hocker, E. Zerbe, and C. G. P. Berdanier, “Characterizing Doctoral Engineering Student Socialization: Narratives of Mental Health
collected during this study were both qualitative and quantitative, making this a mixedmethods study. The data we collected to extract creativity were mainly qualitative. Though therewere 11 instruments in total that we could use to extract data, and 13 graduate engineering studentsparticipating in the study (in 5 groups: G1 to G5), we had only nine complete sets for all 11instruments. As a result, we used a critical case study approach for our analysis.RQ1: How do engineering students perceive the importance of creativity in their leadershipdevelopment before and after creativity instruction?To answer our first research question, we examined the pre-course questionnaire and comparedthe participants’ ratings and reasons with their post-course self
Leadership Program, Fish Aides, Horizons Consulting Guild, and Engineering Honors. Upon graduation, Kiersten hopes to use her internship, study abroad, and organization experience to pursue a career in the energy sector. Having grown up abroad, she hopes to live internationally again sometime in the future.Jiacheng LuLori L. Moore, Texas A&M University Dr. Lori Moore is an Associate Professor in the Department of Agricultural Leadership, Education, and Communications at Texas A&M University. Dr. Moore teaches introductory leadership, leadership the- ory, adult education, and methods of teaching courses and supervises students completing their supervised American
Paper ID #12803Comparing Disparate Outcome Measures for Better Understanding of Engi-neering GraduatesMs. Samantha Ruth Brunhaver, Arizona State University Samantha Brunhaver is an Assistant Professor of Engineering in the Fulton Schools of Engineering Poly- technic School. She completed her graduate work in Mechanical Engineering at Stanford University. She also has a B.S. in Mechanical Engineering from Northeastern University. Her research examines the career decision-making and professional identity formation of engineering students, alumni, and prac- ticing engineers. She also conducts studies of new engineering
the potential ofthis approach for increasing (1) learners’ capacities to engage in both far transfer (innovation)and direct application (efficiency) and (2) the formation of STEM identity. This new study willuse a mixed methods approach, including a quasi-experimental research design incorporatingboth quantitative and qualitative data analytic methods. A combination of measures includingstandards-based science unit tests, existing district student and administrative data sources,student pre-post surveys, and a preparation for future learning (PFL) assessment tool.VI. ConclusionsWe have applied the theory of Imaginative Education to develop Through My Window, atransmedia learning environment for engineering education. Evidence indicates that