Paper ID #18886Formalizing Experiential Learning Requirements in an Existing Interdisci-plinary Engineering CurriculumDr. Harold R. Underwood, Messiah College Dr. Underwood received his Ph.D. in Electrical Engineering at the University of Illinois at Urbana- Champaign (UIUC) in 1989, and has been a faculty member of the engineering Department at Messiah College since 1992. Besides teaching Circuits, Electromagnetics, and Communications Systems, he su- pervises engineering students in the Communications Technology Group on credited work in the Inte- grated Projects Curriculum (IPC) of the Engineering Department, and those who
achieve a sustainable world, and to raise the global quality of life 1,2.A path for accomplishing this major reform in education and pre-licensure experience in theengineering profession is further described by Walesh 3. Furthermore, longstanding ethicalcannons of engineering practice require that civil engineering graduates serve the profession andsociety as principled leaders 4. To prepare students to meet an increasing demand forprofessional skills in the engineering profession, undergraduate programs are responding throughmodification of academic curriculum material and course content 5. The American Society ofCivil Engineers published an expanded set of 24 civil engineering outcomes in the CivilEngineering Body of Knowledge for the 21st
development and deployment of a new, integrative, first-yearbiomedical engineering curriculum focused on studio-based learning of engineering design.Developed by an interdisciplinary team of faculty and staff, this curriculum is team-taught(meaning, multiple faculty are in the studio at all times) by biomedical engineers, mechanicalengineers who specialize in design, a professor of English, a computer scientist, and amathematician. The foundation of the curriculum is the engineering design studio, which meetsfour hours per day, four days per week. The design studio has a different general theme for eachacademic quarter – for example, the Fall quarter theme is ‘Play for All,’ focusing on children’splay environments, toys, and games that are
Paper ID #39735Using a Framework to Define Ways of Integrating Ethics across theCurriculum in EngineeringDr. Laura Bottomley, North Carolina State University at RaleighCynthia BauerleLisette Esmeralda Torres-GeraldCarrie Hall ©American Society for Engineering Education, 2023 Using a Framework to Define Ways of Integrating Ethics across the Curriculum in EngineeringEthics are an important part of engineering and computer science education for many reasons,ABET accreditation being only one. Historically, engineering ethics have been taught as a part ofa specific class, often outside of the engineering
Professional Engineer (Alaska), Project Management Professional, LEED Accredited Professional in Building Design and Construction, and Envision Sustainability Professional. His research interests include engineering education; infrastructure; sustainable design; and clean, renewable energy. ©American Society for Engineering Education, 2024Integrating Professional Credentialing in Sustainability into Civil Engineering Curriculum: A Case StudyAbstractThe concept of sustainable development rose to prominence with the publication of OurCommon Future as an output of the United Nations’ Brundtland Commission. Recently,increased emphasis on the impacts of climate change and globalization has
Paper ID #26692Work in Progress: Integrating Civil Engineering Design Software into theCurriculum to Enhance Career Readiness SkillsProf. Todd M. Brown P.E., University of Hartford Todd Brown, P.E. received his MSCE from the University of New Hampshire in 1984. He worked as an environmental engineer in the Army for 4 years and then 28 years at Tighe & Bond working on contaminated sites, industrial and municipal wastewater treatment, collection systems, water transmission mains and urban redevelopment projects. In 2016, he became an Applied Assistant Professor in the Civil, Environmental, and Biomedical Engineering
Paper ID #14056Evaluating the Impact of Curriculum-Integrated Engineering Design Mod-ules in Middle Grades ClassroomsJessica M Harlan, University of South Alabama Jessica M. Harlan is a PhD student in Instructional Design and Development at the University of South Alabama (USA). Her research interests include educational evaluation and measurement. Jessica’s current research focuses on integrated STEM education, including evaluating a middle school engineering design curriculum. She will complete her degree in Spring 2016, and her dissertation research examines the relationship between the fidelity of implementation of
origins to the 1994 ASEE report Engineering Education for aChanging World, which, among many other recommendations, asserted that “engineeringeducation must take into account the social, economic, and political contexts of engineeringpractice…” [2, pp. 20–21]. The report emphasized that contextual skills should be deliveredthrough multi- and interdisciplinary coursework, integrated into the existing curriculum, andfocused on an understanding of the ethical dimensions of engineering. A decade later, theNational Academies report Educating the Engineer of 2020 re-emphasized the importance of thethemes of interdisciplinarity, societal context, and ethics to the engineer of the then-future [3].In 2018, Dr. Ruth Graham, in her report on The Global
summers, engaging in engineering research and writing pre-college engineering curricula. Her research interests include physics and engineering education and teacher professional development. c American Society for Engineering Education, 2018 Integrating Authentic Engineering Design into a High School Physics Curriculum (Work in Progress)Background and ObjectivesThe Framework for K-12 Science Education calls for the integration of engineering practicesinto pre-college science classrooms [1], because “providing students a foundation in engineeringdesign allows them to better engage in and aspire to solve the major societal and
current engineering curricula lacks thehuman-centered design. The students will be introduced ability to prepare their students for the following:to a five-step design process originally developed by human-elements of designEngineering for Change. A fundamental aspect of this real-world problem-solvingdesign process is its iterative nature and its inherent focuson the human at the center of the problem-solving This paper outlines an initial attempt to address these twoexperience. The design process will be presented to the main concerns in the engineering curriculum at Lipscombstudents through three interactive experiences. University. By
the students theopportunity to practice design, problem-solving, and professional skills such as teamwork andcommunication. The inclusion of introductory design courses in the engineering curriculum is afast-growing initiative that has been implemented in several universities across the US as part ofmultiple efforts to improve retention [1]. Still, current concerns about engineering retention andthe preparation that engineering students need, demand an examination of these courses. Oneway to examine these courses is by exploring how students use the content included inintroductory engineering design classes as they progress into successive phases of theirengineering education. In this paper, we are interested in examining what aspects of a
education at the Tecnologico de Monterrey. Her main research areas are faculty development, teaching methods, and gender issues in STEM education. American c Society for Engineering Education, 2021 Integrating Global Sustainability Challenges in an Organizational Management CourseAbstractPrevious studies indicate that there is a link between a country's engineering capacity and itseconomic development. Future professionals must be capable of integrating the social andenvironmental fields into their engineering solutions. Their vision of the world must answer anew development model that ensures resource availability and well-being for
inspired by theneeds of creating meaningful hands-on DSP lab experiments in the allotted one term period (tenweeks) and by the goal of improving student success in implementing DSP-based culminatingprojects that meet desired goals within realistic constraints. The benefits of integrating the MCUtools in the DSP course are very promising. It permits more practical DSP laboratories and DSP-based capstone projects that render richer design experiences and makes meeting realistic designconstraints feasible. Furthermore, it provides an integrated laboratory curriculum structurebetween embedded microcontroller and DSP courses which reduces students’ unnecessary effortof learning new tools in different courses. Consequently, students can focus more on
Paper ID #23365Women in Science and Engineering: A Framework for an Honors Under-graduate CurriculumDr. Angela M Kelly, Stony Brook University Angela M. Kelly is an Associate Professor of Physics and the Associate Director of the Science Education Program at Stony Brook University, New York. She attended La Salle University, Philadelphia, Pennsyl- vania, where she received her B.A. degree in chemistry, and completed her M.A. and Ph.D. degrees in science education (2000 and 2006, respectively) and her Ed.M. degree in curriculum and teaching (2007) at Teachers College, Columbia University, New York. She is the recipient of
Paper ID #14663Integrating Compassion into an Engineering Ethics CourseDr. George D. Catalano, Binghamton University Professor of Biomedical Engineering, Binghamton University Previously member of the faculty at U.S. Military Academy and Louisiana State University. Two time Fullbright Scholar – Italy and Germany. c American Society for Engineering Education, 2016 Integrating a Compassion Practicum into a Biomedical Engineering Ethics CourseAbstractA required undergraduate course in the ethics of biomedical engineering has been developed andtaught. Students are required to design
Paper ID #16192STEM-Discovery – An Integrated Approach to DESIGNDr. Heath Tims, Louisiana Tech UniversityDr. Kelly B. Crittenden, Louisiana Tech University Dr Kelly Crittenden is a member of Louisiana Tech University’s Integrated STEM Education Center (ISERC), and the Harrelson Family Professor of engineering. He earned his PhD and BS in BioMedical Engineering in 2001, and 1996 respectively. Dr Crittenden’s interests lie in K-12 outreach, developing project-driven curricula, and product design. c American Society for Engineering Education, 2016 STEM-Discovery – An Integrated Approach to
mandatory course (core curriculum) – MET 421, 422 and 423. The syllabus foreach sequence is attached. The course involves developing a comprehensive project during these3 quarters; including a demonstration of a working prototype (a physical product rather than acomputer based model or data from experiments/process/procedure). Students must develop anew or improved product or technology during their senior design sequence. Each project will bedeveloped by a team of 3 to 4 students. Usually teams are a mix of both mechanical andelectrical engineering technology concentrations.This course is an excellent capstone experience, which requires both teamwork and individualskills to solve a modern industrial problem. Senior design project seminars in fall
. c American Society for Engineering Education, 2016 Integrating an Introduction to Engineering Experience into a University Seminar CourseAbstractRetention statistics show that the most drastic decline in retention rates for engineering andengineering technology majors at Texas State University occur after the first and second years.To address this issue, the LBJ Institute of STEM Education and Research at Texas State isemploying a multi-faceted approach to implement proven strategies for increasing studentretention as a part of an NSF IUSE (Improving Undergraduate STEM Education) grant, TexasState STEM Rising Stars. One of these strategies is to introduce a new first-year introduction toengineering
inequality, ignoring communityquestions and concerns, or failing to consider the consequences of communities when assessingprogram success [14]. The research tested CC with 150 students in two US universities through asurvey consisting of 46 items that capture systems of oppression in civil engineering throughthree indicators (Critical Reflection: Perceived Inequality; Critical Reflection: Egalitarianism;and Critical Action: Sociopolitical Perception). The study highlighted that such an instrumentcan also be used to assess ABET SOs 2 and 4.Baideme et al. conducted an evaluation on how group learning impacted the curriculum andcourses across junior- and senior-level environmental engineering courses at 14 institutions,considering ABET SO 5 which
. 2Harvey Mudd College, whose 1957 founding mission was to produce alumni who would“assume technical responsibility with an understanding of the relation of technology to the rest ofsociety” [10], designed its engineering curricula to include one-third of students’ coursework inhumanities and social science fields. In 1970, Harvey Mudd integrated bold reforms thatemphasized connections across disciplinary boundaries, emphasized “the human basis of alltechnical problems,” and encouraged students to cultivate humility in appreciating the limitationsof their knowledge: “Insist that tools take you only so far” [11]. The 1970’s WPI Plan [12] was are-framing of Worcester Polytechnic Institute’s technical curriculum in societal context,emphasizing
Paper ID #42120Navigating the Mystery: An Approach for Integrating Experiential Learningin Ethics into an Engineering Leadership ProgramDr. James N. Magarian, Massachusetts Institute of Technology James Magarian is a Sr. Lecturer with the Gordon-MIT Engineering Leadership (GEL) Program. He joined MIT and GEL after nearly a decade in industry as a mechanical engineer and engineering manager in aerospace/defense. His research focuses on engineering workforce formation and the education-careers transition.John M. Feiler, Massachusetts Institute of TechnologyLeo McGonagle, Massachusetts Institute of Technology Leo McGonagle
human variability into account during userinterviews, but not applying those insights into mathematical models that determine how theactual product is shaped and manufactured. How might instructors integrate inclusive practicesinto these courses without adding even more material into content-packed classes? This work inprogress paper presents an ongoing case study as one attempt to answer that question.Our setting: transforming a middle-years course at a research-centric institutionOur case study occurs in a required undergraduate course in biomedical engineering at a largepublic research-intensive university. The course, which we will call Conservation Principles forthe purposes of this paper, is typically taken in the second or third year and
Paper ID #30435Real-World Examples and Sociotechnical Integration: What’s the Connec-tion?Jacquelene Erickson, Colorado School of Mines Jacquelene Erickson is a fourth year undergraduate student at Colorado School of Mines pursuing a major in Electrical Engineering. After graduation in May 2020, she plans to work in electrical distribution design at an engineering firm.Dr. Stephanie Claussen, Colorado School of Mines Stephanie Claussen is a Teaching Professor with a joint appointment in the Engineering, Design, and Society Division and the Electrical Engineering Department at the Colorado School of Mines. She ob
engineeringcurriculum. To add to this gap in literature, this paper analyzes quantitative responses of genderand sexual minority students’ perceptions of the engineering curricula from the survey conductedin 2018.Relevant LiteratureThe predominant normative marker of science and scientists in the U.S. has historically andcontinues to be based on White cisgender male perspectives [1]–[7]. Not surprisingly, thishomogenous and heterogenous perspective leads to pedagogical practices in which minoritizedstudents underperform compared to when innovative pedagogical models are used, such asflipped classrooms [8], [9]. This long-standing conceptualization of science and scientists alsoresults in an engineering curriculum that deems “issues of communication, justice
the perception that it is too expensive. Both issues need to be addressed. More scholarships and sponsored sources of funding, as well as a greater awareness of funding options, would very likely encourage and enable more students to go abroad. Higher education institutions also need to continue working to provide less expensive options and more financial assistance, or allow students to take advantage of other cost-effective options.” [2] “Curriculum: Study abroad is not currently considered an essential component of an undergraduate experience by many students, families and educators. In fact, it is often considered an “add-on” and not integrated within the curriculum. Whether or not credits
, urban school districts with research experiences and shared activities designed to increase their understanding of the challenges and demands of nanotechnology, collaborative research, and college/career opportunities in STEM fields. Lead participants in the creation of 15 hands-on, inquiry-based teaching modules (5 per year) which integrate multiple STEM disciplines, convey scientific-process skills, and align with Indiana State Standards and Next Generation Science Standards (NGSS) Introduce teaching modules and classroom assessment strategies into targeted school districts in an effort to cultivate a positive image of, and greater interest in, STEM fields among urban secondary students, many of whom are from underrepresented
engineering design context,2 meaning that ethics is implicit throughout design processes.While recognition of major issues is important in an engineering education context, this view ofethics does not allow for an integrated understanding of the way ethics is implicated in themicro-level everyday decisions and reasoning associated with design.1 This more nuancedunderstanding would “provide a firmer basis for thinking about ethics in the engineering designprocess” (p. 514) and might encourage more incorporation of ethical thinking into the entiredesign process. Nuanced micropolitics are interwoven throughout the technical and otherdecisions that comprise the design process, and all decisions and agreements that emerge throughthis process could result
Paper ID #11792Teaching STEM Through an Indoor Skydiving Experience (Curriculum Ex-change)Dr. Philip S. Schmidt, University of Texas, Austin Philip Schmidt is the Donald J. Douglass Centennial Professor, Emeritus and University Distinguished Teaching Professor, Emeritus at the University of Texas at Austin, where he recently retired after 43 years on the faculty in Mechanical Engineering. He is a Fellow of the American Society of Mechanical Engi- neers and a registered professional engineer. Dr. Schmidt received a BS in Aeronautics and Astronautics from MIT and MS and PhD in Mechanical Engineering from Stanford, the
addition, incorporatingundergraduate research into the sequence was supported by the Office of UndergraduateResearch through an award from the “Integrating Undergraduate Research into the Curriculum”program. There is considerable overlap between ETAC ABET student outcomes and the desiredstudent learning outcomes from undergraduate research experiences. The two-course sequenceleveraged this overlap [5].The design of the sequence was aligned with the ETAC ABET student outcomes and such a linkwas intentional in the design of the sequence. The mapping of desired skills and current ETACABET student outcomes are summarized in Table 1.Table 1. Relevance Between Course Skills and ETAC ABET Student Outcomes Desired Course Skills
Currently a professor of Mathematics at Brigham Young University, where he has served on the faculty since 2005. He received his Ph.D. > in Mathematics from Indiana University in 2002 and was an Arnold Ross Assistant Professor at The Ohio State University from 2002-2005. Since then, he has won several grants from the National Science Foundation, including a CAREER award in 2009. His current research interests are in nonlinear and stochastic dynamical systems, numerical analysis and scientific computing, healthcare analytics, actuarial science, and network science. c American Society for Engineering Education, 2016 Modeling across the Curriculum: A SIAM-NSF initiative