(STEPS).Erin Cortus (University of Minnesota - Twin Cities)Jacek Koziel (Professor) (Iowa State University of Science and Technology) Jacek Koziel is serving as a Professor at Iowa State University, Department of Agricultural and Biosystems Engineering. He leads and collaborates on multidisciplinary projects on the nexus of agriculture and the environment. His team develops and tests strategies to enhance the efficiency of livestock production systems and reduce the environmental impacts of animal production. Dr. Koziel received M.S. in Mechanical Engineering from Warsaw University of Technology in 1989 and M.S. in Environmental Quality Engineering from the University of Alaska in Anchorage. He earned a Ph.D. in Civil
Engineering. He is a licensed Professional Engineer with over 30 years of consulting, academic and research experience. He is currently a Professor of Civil Engineering at the United States Coast Guard Academy in New London, CT ©American Society for Engineering Education, 2023Enriching student learning through compelled active participation in a coastal resiliency courseAbstractAs the primary commissioning source for civil engineers for the U.S. Coast Guard, it isimperative that our graduates understand the projected impacts of climate change – sea level rise,altered hurricane patterns, and other associated hazards – on coastal infrastructure. At the UnitedStates Coast Guard
, sustainability of the built environment and more specifically, Building Information Modeling (BIM) workflows for enhanced quality control and labor time utilization for coordinated MEP and specialty trade equipment, from design-to-install, in retrofit environments. Before joining Wentworth, Dr. Cribbs served as a Principal at Green Ideas Building Science Consultants, based in Phoenix where he regularly engaged in BIM workflows for de- sign/constructability/operations analysis, reporting and review with the full spectrum of project stakehold- ers. He has also taught both undergraduate and graduate level courses in design, construction management and Building Information Modeling at Arizona State University and the Frank Lloyd
assignment needs to be clearly defined and properly assigned to students. The nature of educational activities and projects assigned to construction students is not entirely aligned with collaboration features, and, therefore, educators should particularly define projects and assignments that promote collaboration and teamwork aspects in students. This study aims to report on different features of collaboration efforts between two programs. The research question was how a collaborative environment I perceived by students from different majors. A quantitative method in fall 2021 was employed to highlight various students’ perceptions of the subject. The results indicate that program identity, trust
Paper ID #38735Data Acquisition System to Measure and Monitor Temperatures andAtmospheric Air ParametersDavid N. Long, James Madison University David N. Long is a recent graduate of James Madison University’s, Integrated Science and Technology program. David studied energy and production systems where he worked on the Water Out Of Thin Air project. The aim of the project was to provide clean water with low energy inputs. David concentrated on the Data Collection System which was designed and built to record the key parameters of the project in Costa Rica.Dr. Karim Altaii, James Madison University Dr. Altaii holds a
students” to improve learning within the university.based on the idea of students teaching and learning from each other. Student attitudes aboutteaching and learning from peers are explored, along with the relative importance of factors Background and Motivationhighlighted in the Self-Determination Theory (SDT) of intrinsic motivation- autonomy, masteryand relatedness (i.e., feeling a connection to a larger group). The first approach described is the The work in this paper was motivated by a desire to improve student performance in Aerospaceuse of capstone design projects with explicit educational objectives to enhance the hands-on Engineering (AE) capstone design at a mid-sized southeastern private university. At this school
State University, San Luis Obispo in 2001. Prior to attending graduate school at Colorado State University (CSU) she spent 3 years working as a Design Engineer for RBF Consulting in Storm Water Management. Where, she worked on various flood control, hydrology and hydraulics projects. She is a Licensed Professional Engineer in the State of California. She completed her graduate studies in Civil Engineering at CSU with a MS in 2006 and Ph.D. in 2009, where she specialized in sediment transport and river mechanics.Dr. Jeyoung Woo P.E., California State Polytechnic University, Pomona Dr. Jeyoung Woo is an assistant professor in the Department of Civil Engineering at California State Polytechnic University, Pomona (Cal
, where he positively engages with numerous mechanical engineering advisees, teaches courses in mechanical engineering and sustainability, and conducts research in energy systems. Throughout his career, Dr. Kerzmann has advised over eighty student projects, some of which have won regional and international awards. A recent project team won the Utility of Tomorrow competition, outperforming fifty-five international teams to bring home one of only five prizes. Additionally, he has developed and taught fourteen different courses, many of which were in the areas of energy, sustainability, thermodynamics, dynamics and heat transfer. He has always made an effort to incorporate experiential learning into the classroom
real-time DSPlaboratory course that aims to give students hands-on experience with real-time embeddedsystems using Android tablets at an early stage of their careers. The students broaden and deepentheir understanding of basic DSP theory and techniques and learn to relate this understanding toreal-world observations and applications. The students learn industrially relevant skills such asrapid design prototyping in Python and Android development of DSP applications in C++/Javafor computationally constrained mobile devices. The course advances in two phases: structuredlabs and team projects. In the first half of the course, a series of structured labs are provided toimplement and analyze real-time DSP systems that utilize fundamental DSP
deMonterrey, showed that the methodology enhanced project monitoring, leadership, and systemicreasoning skills in students. However, no significant impact was perceived in mutual support,where students seem not to collaborate with the teamwork, and potential interpersonal conflictsare not intended to be solved.IntroductionEngineering students are often requested to work collaboratively in the solution of complexproblems, however, accurately measuring the performance of individual team members can bedifficult due to the conjunction of contributions into a single deliverable. This paper shows theimpact of applying the Scrum methodology to manage and evaluate collaborative projects in avirtual collaborative environment, using a multimedia platform to
- cient and effective collection, analysis, and presentation of results to stakeholders are important parts of the work done for the TPP evaluation cycles. As the UPRM Center for Professional Enrichment coordina- tor for 12 years, Dr. Bellido was in charge of organizing faculty professional development activities. This placed her in an advantageous position to disseminate vanguard information about education, evaluation theory, and practice which can be useful for both teaching and research faculty. As the UPRM Resource Center for Education Research and Services Center (CRUISE) coordinator since 2002, she has directed and or evaluated more than twenty educational research, professional development, and outreach projects
AC 2007-1706: ASSESSING REFLECTIVE JUDGMENT THINKING INUNDERGRADUATE MULTIDISCIPLINARY TEAMSMichael Cama, Illinois Institute of TechnologyDaniel Ferguson, Illinois Institute of TechnologyMargaret Huyck, Illinois Institute of Technology Page 12.272.1© American Society for Engineering Education, 2007 Assessing Reflective Judgment Thinking in Undergraduate Multidisciplinary TeamsAbstract – Our University has a project-based interprofessional learning program (IPRO)designed to improve competencies in project management, teamwork, communications,and ethics among the undergraduate students. An emerging goal is to increase the level of“reflective judgment
University. As a graduate student, she is involved in the following projects: Society of Manufacturing Engineers Education Foundation Project: Product Lifecycle Management Curriculum Modules and National Science Foundation project: Midwest Coalition for Comprehensive Design Education. She is a student member of the American Society of Engineering Education, Society of Manufacturing Engineers (SME), Society of Woman Engineers (SWE), and Woman in Technology (WIT). She published two chapters in two textbooks, two journal articles and presented 23 conference papers. Her current research focuses on product lifecycle management and digital manufacturing.Mileta Tomovic, Purdue University Dr
. Also, prerequisitesknowledge test is very helpful to assess their concepts and to conduct any extra helpsessions.Conventional teaching methods (lectures, classwork and team-home work, mini- andterm-ending projects) are followed for this course. The final take-home project enhancesthe students’ understanding of the material covered in the entire course. Also itdemonstrates the type of study and research required for realistic design.Besides a review of the mechanics concepts, perhaps the only two new topics that areusually covered in depth in a typical Machine Design course are: Fatigue Design and(Static and Fatigue) Failure Theories as applied to the design of components (shafts,keys, couplings, fasteners, bearings, springs and gears
precision agriculture. However, there has not been a proportionate increase inthe number of students pursuing graduate or undergraduate level research in the area ofunmanned aerial systems.The Department of Aerospace Engineering at Cal Poly Pomona is currently engaged in severalUAV research projects. Current research focus is on increasing the UAS autonomy. The ongoingresearch projects include development and validation of flight dynamics models of UAVs,4 modeling and simulation,5 development of obstacle and collision
Paper ID #19554Developing Additive Manufacturing Laboratory to Support Instruction andResearch in Engineering TechnologyDr. Mert Bal, Miami University Mert Bal received his PhD degree in Mechanical Engineering from the Eastern Mediterranean Univer- sity, North Cyprus in 2008. He was a Post-Doctoral Fellow in the University of Western Ontario, and a Visiting Researcher at the National Research Council Canada in London, Ontario, Canada between 2008 and 2010. He was involved in various research projects in the areas of collaborative intelligence, localiza- tion and collaborative information processing in wireless sensor
InstitutionI. Project BackgroundThis paper discusses the creation and first offerings of a multidisciplinary senior design projectcourse sequence at a regional Hispanic-Serving Institution (HSI). The courses, MultidisciplinaryEngineering Design I and II (GEEN 4301 and 4302), were created as part of supporting activitiesfor an NSF-STEM grant entitled: “Javelina Engineers STEM Scholarships (JESS): Building thePathway for Baccalaureate to Masters Degrees,” or the JESS Program.The over-arching JESS Program goal was to identify academically talented undergraduatestudents across all disciplines offered by the Frank H. Dotterweich College of Engineering(COE) at Texas A&M University-Kingsville (TAMUK) and retain these students throughcompletion of the
. He has since moved on from itek Energy and is now working as a project manager at Western Solar Inc, a solar installation company in Bellingham, WA. His work involves system design, operations and maintenance support, customer and technical support, product research, and community outreach efforts. He is a NABCEP Certified Technical Sales Professional and enjoys working on solar education projects in his community.Daniel Saunders, Western Washington UniversityMr. Troy Thornton, Western Washington University c American Society for Engineering Education, 2019 Photovoltaic System Performance Under Partial Shading: An Undergraduate Research ExperienceAbstract:This paper
EECS Department. His current research activities include nanomagnetics/spintronics, graphene electron- ics, nanophotonics, and nano-electromechanical systems. c American Society for Engineering Education, 2020 Career Development Impacts of a Research Program on Graduate Student and Postdoc MentorsAbstract—This evidence-based practice paper explores how graduate students and postdocsbenefit from serving as mentors to undergraduate research interns. Utilizing three years ofqualitative data from 38 mentors, our findings indicate that mentors feel better prepared forfuture faculty careers as they gain skills in project management, supervision, andcommunication. This paper
professional practice.Dr. Robin Fowler, University of Michigan Robin Fowler is a lecturer in the Program in Technical Communication at the University of Michigan. She enjoys serving as a ”communication coach” to students throughout the curriculum, and she’s especially excited to work with first year and senior students, as well as engineering project teams, as they navigate the more open-ended communication decisions involved in describing the products of open-ended design scenarios. c American Society for Engineering Education, 2020IntroductionIn team support literature, it is not uncommon to suggest that faculty avoid strandingunderrepresented students, like women, on a team [1], [2]. However
Industrial In- strumentation and Electrical Technology Program at Northwest Louisiana Technical Community College (NLTCC) in Minden, Louisiana. She earned her degree in Instrumentation Control Systems from NLTCC and has worked in the Instrumentation field for more than 10 years as both technician and faculty. c American Society for Engineering Education, 2020 Educating the Workforce in Cyber & Smart Manufacturing for Industry 4.0AbstractThe objective of this paper is to outline the details of a recently-funded National ScienceFoundation (NSF) Advanced Technological Education (ATE) project that aims to educate andenable the current and future manufacturing workforce
provided feedback about the designs tothe professor solely for the evaluation of the course.In addition to detailing the outcomes of the project, this paper discusses the merits anddrawbacks of short timeframe multi-disciplinary teaching collaborations along withrecommendations for further development.I. IntroductionA. Industrial design and usabilityIndustrial design is a user-centered discipline and has developed many tools in its rich historyto enhance usability by helping designers to make better design decisions [1]. This could bein the form of interviews, discussions, focus group studies, or co-design [2]. In one way oranother, the user is typically involved in the process. Specifically, for a project to besuccessful, one must fully
engineering education (e.g., eTextbooks with embedded simulations) and the complex correlation between instructional material and student de- velopment. Dr. Richard is involved in many outreach activities: e.g., tutoring, mentoring, directing related grants (for example, a grant for an NSF REU site). Dr, Richard is active in professional societies (Amer- ican Physical Society (APS), American Institute for Aeronautics and Astronautics (AIAA), etc.), ASEE, ASME. Dr. Richard has authored or co-authored about 25 technical articles (21 of which are refereed pub- lications). Dr. Richard teaches courses ranging from first-year introductory engineering project design, fluid mechanics, to space plasma propulsion.Dr. Noemi V
- The Benefits and ChallengesAbstractIntercollegiate design competitions are a popular means to engage students in design activitiesthat extend beyond the curriculum. When students gather around a project in their spare timeand use their classroom skills to design, build, and test a product for an intercollegiatecompetition, something amazing happens: They develop a passion for engineering. This paperdiscusses the key benefits to engineering undergraduate students that flow from involvement in ateam design competition. Advisor involvement plays a key role in both project success andstudent learning throughout the process. Different approaches to advising student competitionteams are compared. Specific examples are taken from the authors
year and succeeded in its goals of increasing students’ knowledge of theadditive manufacturing processes. Our results also show improvement in the students’ abilities toconduct individual research projects, work in an interdisciplinary environment, utilize computer-aided tools and laboratory facilities, and improving students’ communication and presentationskills. Some limitations of the REU program are explained in the paper.INTRODUCTION Missouri University of Science and Technology (Missouri S&T) hosts an AdditiveManufacturing Research Experience for Undergraduates program. Additive manufacturing,sometimes called direct digital manufacturing, is a class of manufacturing processes where bymaterial is added in a layer-by-layer
Linköping, Sweden Belfast, UKIntroductionProject courses in which students design, build and test a device on their own are increasinglybeing used in engineering education. The reasons include that such projects do not only trainstudents skills in design and implementation but can also be exploited in order to increasestudent motivation, to give an improved understanding of engineering science knowledge and topractice non-technical skills such as teamwork and communication. However, design-build-test(DBT) experiences may also be costly, time-consuming, require new learning environments anddifferent specialized faculty competence (Malmqvist et al.1). In particular, design-build-test experiences play a
Paper 2005-2156 A Pilot Study for a “Course-less” Curriculum R. L. Kolar, R. C. Knox, K. Gramoll, T. R. Rhoads University of Oklahoma, Norman, OK 73019AbstractIn 2002, we received an NSF planning grant (NSF EEC 0230681) that builds upon our SoonerCity project, which was funded through the Action Agenda program (NSF EEC 9872505).Briefly, Sooner City is a comprehensive, integrated, infrastructure design project that is threadedthroughout the OU civil engineering curriculum, beginning in the freshman year. For practicalpurposes, the original Sooner City project was implemented in the
Session 2602 Experiential Learning in Aircraft Structures Masoud Rais-Rohani Mississippi State UniversityAbstractA design-build-test project is used as means of providing an academic-based, industry-focusedexperiential learning opportunity for students in a senior-level aircraft structures course taught inthe Department of Aerospace Engineering at Mississippi State University. Initiated as a paperdesign project in 1998, the project has rapidly evolved into a comprehensive learning experiencewith prototype development and testing as its two major elements
and image processing. One of thedriving forces behind DSP is the overwhelming interest in real-time processing as, for example,in high definition television, spread spectrum communications, and speech recognition systems.It is clear that DSP is instrumental in conveying the principles of many topics covered inelectrical engineering particularly with respect to modeling and simulation. The objective of this paper is to describe a multi-course sequence which employs DSP atmany levels of the undergraduate curriculum for the purpose of enabling students to visualize,test, and implement concepts introduced in the classroom. This is accomplished through thecompletion of special projects and laboratory exercises in multiple courses with the goal
AC 2012-3452: TRAINING APPLES TO PERFORM LIKE ORANGES: ALOOK AT UNIVERSITY TEAMING EDUCATIONJill Nelson P.E., California Polytechnic State University Jill Nelson is an Assistant Professor for the Architectural Engineering Department at California Polytech- nic State University (Cal Poly), San Luis Obispo, Calif. Nelson came to Cal Poly with more than 25 years of structural design and project management experience. She is a registered Professional Engineer and Structural Engineer in the states of California and Washington. Nelson received a B.S. degree in civil engineering from the University of Nevada, Reno, and a M.S. degree in civil engineering from the University of Washington.Dr. Andrew J. Holtz P.E