modeling from an assembly of 3Dgeometry to that of a repository of project information and introduce a fully model-centric designprocess. The concept underlying BIM is using digital technologies to integrate all project data inorder “to build a building virtually prior to building it physically, in order to work out problems,and simulate and analyze potential impacts” 2.Definitions of BIM vary, but common to most is an emphasis on the integration of project data.The American Institute of Architects (AIA) defined BIM as “a model-based technology linkedwith a database of project information” 3. More specifically, BIM has been defined as acombination of graphical project data such as 2D and 3D drawings and non-graphicalinformation including
Paper ID #29715A Model for a Faculty Development Course Redesign Summer Working GroupDr. Michelle M Blum, Syracuse University Dr. Blum is interested in research in improving undergraduate engineering education; including develop- ment of inquiry based activities for first year engineering courses, improvement of student design projects, hands-on activities, professional skills development and inclusion and outreach activities. Dr. Blum also specializes in high performance materials development and characterization for tribological (friction and wear), structural, and biomedical applications.Dr. Katie D. Cadwell, Syracuse
Marchetti, Rochester Institute of Technology (COS) Dr. Carol Marchetti is an Associate Professor of Statistics at Rochester Institute of Technology, where she teaches introductory and advanced undergraduate statistics courses and conducts research in statistics education, deaf education, and online learning. She is a co-PI on RIT’s NSF ADVANCE IT project, Connect@RIT, and leads grant activities in the Human Resources strategic approach area.Prof. Maureen S. Valentine PE, Rochester Institute of Technology (CAST) Maureen Valentine, P.E., has been a faculty member at RIT for more than 21 years and held the position of Department Chair for the Department of Civil Engineering Technology, Environmental Management, and Safety
and practice. In our engineering program,senior engineering students are required to prepare their senior design proposals in a fallsemester and complete the project in the following spring semester. The topics of senior designprojects are chosen by students, not professors. Since last year, each team is required to evaluatethe project from a sustainability point of view in the final report. Accordingly, a new approach isproposed in this paper to enhance students’ understanding of sustainable engineering designprinciples and to help them synthesize sustainability concepts already introduced in previouscourses. This new process starts right after the students select the project topic and form inteams. A six-factor table proposed by Pawley et
computing in their education. This premise served as the basis for a projectfunded by the National Science Foundation CISE Pathways to Revitalized UndergraduateComputing Education (CPATH) initiative in 2007. The project is being carried out by theauthors comprised of a multidisciplinary team of faculty from six departments in the College ofEngineering and one from the College of Education at NC State University.The project has two overarching goals: (1) create a computational thinking thread in theengineering curriculum that spans from the freshman to senior years and bridges the dividebetween freshman year computing and computing in upper-level classes, and (2) enable studentsto take computing competency to the next level, where they are able to
collaborative research, they largely did not do sobecause of a lack of time, support, and concerns regarding conflict with potential collaborators.Suggestions to promote collaborative research among graduate students include providingspecific venues online and at conferences to encourage inter-student interaction and facilitatecollaborative work.IntroductionResearchers participate in collaborative projects to promote innovation,1 share resources andknowledge,2,3 and develop new products.4 Collaborations also provide researchers with theopportunity to learn through cooperation.2,5 For a given project, the collaboration may becomposed of researchers within the same discipline at the same institution, researchers acrossdisciplines at the same institutions
Page 15.604.2the introduction of these methods, we contend that one of the most challenging aspects ofteaching BME 271 is helping students to transfer basic skills in math and science to novelapplications in biomechanics. Specifically, we have identified conceptual questions involvingvector projections to be particularly problematic for many students, limiting their understandingof higher-level concepts that build on these skills.In order to support applied skills in BME 271, we have implemented several methods to engagestudents in a process of review and assessment intended to diagnose and address commonmisconceptions associated with vector analysis. These methods include online coursewaredeveloped by the VaNTH ERC1, PRS to enhance formative
. Page 24.154.1 c American Society for Engineering Education, 2014 An energy assessment of a large grain storage and transfer facility in Michigan: An industry, university and public utility company collaborative effort resulting in energy savings outcomesABSTRACT: In the spring of 2012 Lawrence Technological University was approached by DTEEnergy (the local utility company) with funding to have students and faculty work on an appliedresearch project with the Michigan Agricultural Commodities, Inc. (MAC) to undertake anenergy assessment of the MAC Marlette, MI facilities. The MAC is a private company in thebusiness of buying, selling, storage and distribution of agricultural commodities such
to design anentire system.2,8,15 This means that students must learn the team building and communicationskills to work with others outside of their own discipline. The Accreditation Board for Engineer-ing Technology (ABET) recognizes the importance of these abilities in its Criteria for Accredit-ing Engineering Programs: “Engineering programs must demonstrate that their graduates havean ability to function on multi-disciplinary teams”.1,5 The study of robotics provides an excellentinstrument for teaching and learning about working in multidisciplinary teams.The overall goal of this project is the development of a comprehensive undergraduate course inrobotics that emphasizes multidisciplinary teamwork by encompassing many of the diverse
Session 1843 Humanitarian Engineering at the Colorado School of Mines: An Example of Multidisciplinary Engineering Joan Gosink, Juan Lucena, Barbara Moskal Colorado School of Mines Golden, Colorado 80401Introduction:With the support of a grant from the William and Flora Hewlett Foundation, we aredeveloping a new program in Humanitarian Engineering at the Colorado School of Mines(CSM). The goal of this project is the nurturing of a new cadre of engineers, sensitive tosocial contexts, committed and qualified to serve humanity by contributing to the
teacher at Josiah High School. He has been teaching technology courses. He attended the CAPSULE professional development for teachers in summer 2010. He implemented a capstone project in his technology class by getting his students to design a low cost and portable USB power charger to charge cell phones.Ms. Kristina Buenafe, Josiah Quincy High School Kristina Buenafe is teacher at Josiah High School. She has been teaching mathematics courses. She at- tended the CAPSULE professional development for teachers in summer 2010. She implemented capstone projects in her geometry class by getting his students to design a three-legged chair.Ms. Jessica Chin, Northeastern University Jessica Chin is a Ph.D. candidate. She has
Mechanical Engineering Laboratory courses. In addition, Dr. Ayala has had the opportunity to work for a number of engineering consulting companies, which have given him an important perspective and exposure to the industry. He has been directly involved in at least 20 different engineering projects related to a wide range of industries from the petroleum and natural gas industry to brewing and newspaper industries. Dr. Ayala has provided service to professional organizations such as ASME. Since 2008 he has been a member of the Committee of Spanish Translation of ASME Codes and the ASME Subcommittee on Piping and Pipelines in Spanish. Under both memberships, the following Codes have been translated: ASME B31.3, ASME
people learn and apply design thinking and making processes to their work. He is interested in the in- tersection of designerly epistemic identities and vocational pathways. Dr. Lande received his B.S. in Engineering (Product Design), M.A. in Education (Learning, Design and Technology) and Ph.D. in Me- chanical Engineering (Design Education) from Stanford University. ©American Society for Engineering Education, 2023 Making Spaces to Supporting Formal, Informal, and Nonformal Learning Spanning a University's Makerspace Learning EcologyIntroductionThis cross-case case study [1] project aims to ascribe characteristics of differently orientedmakerspaces across the learning ecology [2] at a
to solve a social good.Mr. Jacob Lam Herring, University of Virginia Research assistant with the team since Summer 2020Sin Lin, University of Virginia Undergraduate Civil Engineering Student at the University of Virginia.Dr. Rider W. Foley, University of Virginia Dr. Rider W. Foley is an assistant professor in the science, technology & society program in the De- partment of Engineering and Society at the University of Virginia. He is the principal investigator at University of Virginia on the ’4C Project’ on Cultivating Cultures of Ethical STEM education with col- leagues from Notre Dame, Xavier University and St. Mary’s College. He is the co-PI on the SCC Harlem project funded by the NSF that explores
engineering approach withalternative implementations of the capstone engineering courses by other colleges anduniversities6-13. Specifically, any capstone projects involving 3D printing and Arduinos todesign a quadcopter are investigated and summarized13-23. The paper also attempts to comparethe student’s prototype with other popular commercially available quadcopters, including somecost comparisons24.Description of the Original Master of Science in Electrical EngineeringUniversity’s Master of Science in Electrical Engineeringprogram offers an in-depth understanding of modernsystems design for emerging and evolving technologies.Students experience design projects in digital, spread-spectrum and space communications, CMOS circuitry andcomputer
Paper ID #21594Improving Senior Design Proposals Through Revision by Responding to Re-viewer CommentsProf. Judy Randi, University of New Haven Judy Randi, Ed.D. is Professor of Education at the University of New Haven where she is currently teaching in the Tagliatela College of Engineering and coordinating a college-wide initiative, the Project to Integrate Technical Communication Habits (PITCH).Dr. Ronald S. Harichandran, University of New Haven Ron Harichandran is Dean of the Tagliatela College of Engineering. He led the Project to Integrate Technical Communication Habits at the Tagliatela College of Engineering. All
design (capstone course in computer engineering). The approach comprises modular course pack development, suitable for alternative teaching models, such as team teaching and development of multidisciplinary courses; team projects to give students hands-on experience with embedded systems; and incorporation of innovative teaching techniques designed to facilitate and enhance the student’s learning experience. Curriculum developments focus on embedded systems and our courses. In the software engineering course, students are exploring how object-oriented development techniques can be applied to industry-oriented embedded system projects, such as pro- cess controllers for numerous appliances (e.g., washing
Wisconsin, Madison Faculty Associate, Institute for Cross-College Biology Eduation Page 15.1154.1© American Society for Engineering Education, 2010Sustaining Appropriate Technology Enhanced Learning in STEMDisciplinesAbstractThe focus of this paper is on our collective experience in a Technology EnhancedLearning (TEL) project with the shared goals of promoting faculty development andencouraging the use of TEL solutions in STEM disciplines at the University ofWisconsin-Madison. Specifically, we will discuss the implementation strategies andresults from a collaborative TEL project in light of the key instructional motivatorsand entry points for
-world job assignments. Approach: Working along these lines, we contacted three local surveying companies5. In order to understand their business, and keeping database concepts as the key point of discussion, we spoke to their project managers. Since the profession of surveying is typically about data collection and its manipulation to generate meaningful reports, some of the questions we asked were: 1. What type of projects do they work on? 2. How is the data collected for any typical project? 3. How is the data stored, retrieved, or manipulated when needed? 4. What is the typical size of their databases? 5. What types of DBMS tools do they use
Paper ID #38037Mixed results for gendered patterns in confidence of teamsuccess and collective efficacyRebecca Matz Becky Matz is a Research Scientist on the Research & Development team at the Center for Academic Innovation at the University of Michigan. She directs and supports research projects across CAI’s portfolio of educational technologies. Becky has research experience in assessing the efficacy of software tools that support student learning and success, analyzing quantitative equity disparities in STEM courses across institutions, and developing interdisciplinary activities for introductory
people worldwide playing video games [1]. Asignificant percentage of those 3 billion people were high school and college-aged [1]. Videogames are becoming a normal sight around the world. In the past decade, the world has seen theintroduction of budget-friendly SBCs (Single Board Computers), microcontrollers, 3d printers, andmassive contributions from the open-source community. [1, 2, 3, 4] This has made the design andimplementation of a DIY handheld video game console more affordable and realizable.The main component of the project consists of an SBC, an operating system to run on the SBC, aHID (Human Interface Device), a power system, a 3d printed case, a display, and speakers. TheSBC used in this project is a Raspberry Pi 4B, however almost
typical chemical engineering undergraduate corecurriculum has not adapted to prepare students for the multiple needs encompassed by thechemical industry. Lack of industry-relevant examples/topics and applications in the coursecontents results in less motivated and/or engaged students. Students therefore often struggleto identify with the profession and are not ready for the workforce when they graduate. ThisNSF PFE: RIEF project examines a unique experience where a student-faculty-industryintegrated community is created to help bridge the gap between industry needs and thecompetencies developed within chemical engineering programs.The project's main goal is to better understand how implementing up-to-date industryproblems into one of the
to control devices, take datafrom sensors, and analyze that data. Each module, inspired by one of the engineering majorsavailable on campus, culminates with a small design project. Each project lends itself tohighlighting different aspects of the design process, as well as different ways of sharingprototypes.Most modules take four laboratory periods, and the basic structure of each module is similar.During the first three lab periods students work in teams of four to build a physical device orobject. The procedures for these first three periods are fairly prescriptive and introduce studentsto new tools, components, techniques, and concepts. As the module progresses, students startconsidering elements of a design challenge that applies their
understanding of engineering practices and anengineering mindset - in order to engage youth learners more authentically inengineering activities. Launched in April 2022. The website is organized around the 10 Practices for an Engineering Mindset, representing ways that engineers engage in their work to solve problems [1].PCEE Division - ASEE 2023Contact: Dr. Rebecca D. Swanson (rebecca.swanson@unl.edu)Project Team: Dr. Saundra Frerichs, Ann O’Connor, Dr. Merredith PortsmoreThis work is supported by STEM Next Opportunity FundClick2Engineering.OrgResources and Learning Opportunities Learning Blasts and Video-Learning Modules Learning Blasts are asynchronous guides that
3-4 member teams withprojects sponsored by industry, faculty, and institutions (like the AIChE design challenge) orbased on textbook or other literature source [1]. An essential component of those projects is theuse of process simulation software (mainly Aspen), with additional support from some othermathematical software (EXCEL, MATLAB) [1]. The use of textbooks is very diverse, but someare very popular like Turton et al. [2]. The dominant technical content of the course (processdesign, simulation, economics, heuristics, synthesis, plant design, energy integration,optimization) has been increasingly enriched with professional skills (i.e., teamwork, projectmanagement, organizational skills, conflict resolution), ethics, and a broad
Professor at the State University of New York, Maritime until August 2016 where she taught power electronics and electric drives. During her tenure at SUNY, she succeeded in se- curing funding for multiple research projects in Intelligent Transportation Systems and Structural Health Monitoring for Offshore Structures from UTRC and American Bureau of Shipping, respectively. Pre- viously, she worked at Philips Research North-America where she focused on developing mathematical models and applying parameter estimation techniques for large-scale lighting control of transportation systems and smart buildings. Prior to that, she was a research fellow at the Singapore-MIT Alliance for Research and Technology working on
prepared.The second principle, flexibility and use, is applied to provide wide range of individualpreferences and abilities [14] for the exams and assignment. For a large course with more than100 students, having oral examinations or multiple project options is challenging. Instead, thelargest component of the grade, the final exam, was chosen for flexibility and as a make-upopportunity for neurodiverse and all students. Students can choose the format of their finaldeliverable. In addition, 1.5 time or double time extension for all exams was allowed for allstudents without requiring an accommodation letter. There was no student who didn’t want toreceive this accommodation because students could finish the exam earlier if they could.To note, for the
Education, 2020 Undergraduate Research: Experimental Study on Performance of Marine PropellersAbstractApplication of computer-aided technologies in design, manufacturing, and engineering analysisis one of the major undergraduate research in the MANE-manufacturing engineering program atVirginia State University. In summer 2017, a manufacturing engineering student engaged in aproject titled Computer-Aided Reverse Engineering of a Boat Propeller. The objective of theproject was to assist the student to boost his knowledge of reverse engineering and gain hands-onexperience in the solid modeling of complicated products. Since 2018, the project has continuedto investigate the performances of standard marine propeller
others.Dr. Cara Margherio, University of Washington Cara Margherio is the Assistant Director of the UW Center for Evaluation & Research for STEM Equity (CERSE). Cara manages the evaluation of several NSF- and NIH-funded projects, primarily working with national professional development programs for early-career academics from groups underrepresented in STEM. Her research is grounded in critical race and feminist theories, and her research interests include community cultural wealth, counterspaces, intersectionality, and institutional change.Kerice Doten-Snitker, University of Washington Ms. Doten-Snitker is a Graduate Research Assistant at the University of Washington’s Center for Evalu- ation and Research for STEM
(NIST-‐ MEP) q Program Advisory Boards Discovery Center Strategic Planq Strategic deployment: q Differen3ate from consul3ng q Leverage strongest university capabili3es with preference for interdisciplinary projects q Engage at mul3ple levels (student, faculty, company, industry) q Provide key project management support q Assess and confirm needs q Develop scope of work/contracts and manage expecta3ons q Create and manage project teams (w/in and third party) q Streamline engagement processes