infrastructure of educational institutions, industry partners and professional trade associations that evolves MNT education based on emerging technologies. • Establishes resource sharing among current ATE Centers and Projects in MNT related disciplines. • Initiates partner mentorship to increase ATE proposal submissions from a more diverse population. • Optimizes national MNT technician curricula, skills and competencies by incorporating distance education with hands-on training. • Delivers professional development to increase enrollment and retention, ensuring sustainability of MNT programs, and increasing the quantity of qualified technician workers across the U.S.The overarching goal of
via Facebook Live and four of them via Zoom Meetings.In total, there was a participation of 121 undergraduate students from the following courses: - Foundations Engineering, - Design of Steel Structures, - Structural Systems, - Design of Reinforced Concrete Structures, - Capstone Project in Structural Design.The average age of the participants is twenty-one years. They were notified about the virtual visita week before the first one, and one session before the following five.III.a. The virtual site visitsStudents were asked to connect to Zoom or Facebook at the beginning of the class. The professorwould already be in the construction site. The professor used a cellphone Samsung Galaxy S9+,to broadcast the visit. The
an active role in reimagining the field of CEE in the future. This course establishes thefoundation for further computing (and sensing) skill development in required junior- and senior-level lab and project courses, including our senior capstone design course. Before graduation, asignificant number of undergraduates also elect to take at least one graduate-level course with astrong computational focus.Both educational activities described in this work were developed and deployed in the Spring2020 semester, after the transition from in-person instruction to remote instruction. In particular,the first activity (“Graph Theory and Disease Transmission”) was released five days after theState of Pennsylvania issued its first “Stay at Home” order
online. Specifically, the campus itself was closed to students and faculty alike, resulting in a hands-on laboratory component that shifted to an ad-hoc “kitchen table” video demonstration format. For senior capstone industrial sponsored projects, the team meetings, sponsor interactions, and project presentations were all converted to a “virtual” format. However, the biggest thing I missed was the interaction with the students in the classroom. I felt the environment was not as interactive and the students tended not to be as engaged. Course content was delivered virtually with lab videos recorded showing how the labs were performed (by the instructor) and the data were collected and sent to the students
Paper ID #35287Who are the instructional assistant interns?: Examining the synergy ofteaching assistants in first-year engineering course during the pandemicDr. Gerald Tembrevilla, McMaster University Gerald Tembrevilla completed his PhD in science (physics) education in the Department of Curriculum and Pedagogy, Faculty of Education at the University of British Columbia (UBC) in Vancouver, Canada in July 2020. Currently, he serves as a postdoctoral fellow for the PIVOT project, a cutting-edge revamp of the engineering curriculum in the Faculty of Engineering at McMaster University, Hamilton, Ontario, Canada. During his
number of works in engineering education, including a Statics workbook for undergraduate engineering students. She is the Director of Innovation Programs and Operations for the non-profit research collaborative, Ad- vancing Engineering Excellence in P-12 Engineering Education. Dr. Gurganus teaches several first and second year Mechanical Engineering classes along with the Mechanical Engineering Senior Capstone design course for UMBC.Dr. Tanner J Huffman, The College of New Jersey Dr. Tanner Huffman is an assistant professor in the Department of Integrative STEM Education and Director of the Center for Excellence in STEM Education in School of Engineering at The College of New Jersey. Dr. Huffman has served as a
c Society for Engineering Education, 2021 2021 ASEE Southeast Section Conference Adaptive Solar Energy Harvesting and Data TransmissionJames Kaul, Greg Weed, Jared Cunningham, Alisha Sue Pettit, Imtiaz Ahmed, Wook-Sung Yoo Computer Sciences and Electrical Electrical Enginering Marshall University, Huntington, WV, USAAbstractA prototype for an adaptive solar tracking and efficient data communication system empoweredby the harvested solar energy was developed by a capstone project team at Marshall University.The prototype is developed on Raspberry Pi and Arduino development boards and the overallsystem comprises a solar tracking module
development of "Introduction to Embedded Computing," which provided avaluable model for both pedagogical approaches as well as laboratory and instructor resourcesthat would be required.7 All of these courses are taught in a studio style in which the laboratoryand lecture material are combined into a single cohesive period and in the same physical space,as shown in Figure 1. Each class meeting typically consists of a short lecture in which conceptsthat are relevant to the experiment are introduced followed by the experimental section of themeeting; all classes have both experimental, and lecture components and each course in thesequence is taught each semester. Educational research has demonstrated the effectiveness of hands-on project-based learning
, existing assignments did not produceexplicit evidence of achievement of the outcome. For example, one of our outcomes is “Anability to work effectively on teams”. One of the criteria under that outcome is “shareresponsibilities and duties”. If a team of students works together all term on a project, you cantell by the content of the report that the team must have shared responsibilities in order toaccomplish the work. However, the report itself is not explicit evidence that the team membersshared responsibilities and duties. Therefore, that submission of the report by the students wouldfail because the report itself was not direct evidence of sharing responsibilities and duties.The faculty discussed two options to make the data better reflect
AC 2007-2822: LAMPSHADE GAME FOR TEACHING LEAN MANUFACTURINGErtunga Ozelkan, University of North Carolina-Charlotte Ertunga C. Ozelkan, Ph.D., is an Assistant Professor of Engineering Management and the Associate Director of the Center for Lean Logistics and Engineered Systems at the University of North Carolina at Charlotte. Before joining academia, Dr. Ozelkan worked for i2 Technologies, a leading supply chain software vendor in the capacity of a Customer Service and Global Curriculum Manager and a Consultant. He also worked as a project manager and a consultant for Tefen Consulting in the area of productivity improvement for Hitech firms. Dr. Ozelkan holds a Ph.D. degree in Systems and
relativelysimple yet thorough assessment process enables administrators to devote time tocurriculum improvements instead of collecting and compiling assessment data withlimited application focus. The performance methodology, although tested in thisparticular case with Civil Engineering, is applicable to other fields of Engineering.IntroductionIn response to the requirements of the Accreditation Board for Engineering andTechnology (ABET) for assessing the performance of students in Civil Engineering inrelation to particular program outcomes, many educational institutions have developedassessment methods based on satisfaction surveys, senior-level capstone design courses,and Engineer-in-Training examinations. In the past, assessors have struggled to
Applied Programming 3 CIT 340 Computer Graphics 3 CIT 345 Multimedia Systems 3 CIT 360 Management Information Systems 3 CIT 365 Database Systems 3 BUS 309 Introduction to Management 3 BUS 310 Introduction to Marketing 3 Total 17 Total 17 Menu V Non-College Elective 3 CIT 495 Independent Study 4 Elective BUS/CIT elective 3 CIT 490 Internship 6 Elective BUS/CIT elective 3 CIT 499 Capstone Project 3
References1. Finelli, C., Klinger, A., and Bundy, D. “Strategies for Improving Classroom Environment,” Journal of Engineering Education, vol. 90, no. 4, October 2001, pp. 491-497.2. Felder, R. M. “A Longitudinal Study of Engineering Student Performance and Retention IV: Instructional Methods and Student Responses to them,” Journal of Engineering Education, vol. 84, no. 4, October 1995, pp. 361-367.3. Dutson, A. J., Todd, R., Magleby, S., and Sorensen, C. “A review of literature on teaching engineering design through project-oriented capstone courses,” Journal of Engineering Education, vol. 86, no. 1, January 1997, pp. 17-28.4. Dunn, R., and Dunn, K. Teaching Students through their individual learning styles: a practical
Department Chair of Technology Systems at East Carolina University and research interests include technology management and managerial decision methods. During his industrial career, he held positions as project engineer, plant manager, and engineering director.Greg Smith, Pitt Community College GREG SMITH received both his Ph.D. degree in Safety Engineering from Kennedy-Western University and his Master of Science in Safety Engineering from Kennedy-Western University. He received a Bachelor of Arts in Chemistry from East Carolina University and another Bachelor of Arts in Psychology from West Virginia University. He has worked in the bio-industry as a manager and leader, he has served in project and
the University of Texas at Tyler in the Department of Mechanical Engineering. His expertise and interests include process dynamics and control, fuel cell systems and thermal fluid engineering education. He teaches courses in system dynamics and control, process control, energy conversion, and thermal fluids laboratory at the Houston Engineering Center. He also has been advisor and mentor to several senior design project groups.Ms. Xuan Nguyen, The University of Texas at Tyler Xuan Nguyen is an undergraduate mechanical engineering student at the University of Texas at Tyler. Her interests include renewable energy, robotic, design, and automatic and HVAC systems. Also, she has a passion and interest in DIY projects
credentialing, and a series of experiential components such as industry-sponsored senior capstone projects, internships, global immersions, and certification- earning activities. The Purdue Polytechnic learning experience is designed to produce graduates who not only have deep technical knowledge and applied skills in their chosen discipline, but also possess problem-solving, critical thinking, communications, and leadership skills sought by industries and communities.TECH120 was chosen to implement the case study because it serves as a gateway to technologycourse for all Purdue majors, and is typically taken by students during their first semester. Thepaper-based survey was distributed by the researcher during the first
leadership in their professional guideline series [3]. In AIChE’s body ofknowledge, it lists necessary psychomotor skills of listening and interpreting, speaking andpresenting, communication, leadership, presentation, and teamwork [4]. In general, everyengineering disciple these professional skills for a successful engineer.Despite the standards set by these societies, usually in an engineering curriculum there is noformal course on professional skills. Typically, during the capstone senior design courseundergraduate engineering students are exposed to some of these skills such as presentation andteam work. Occasionally the center of career development at an institution will offer sessions onprofessional skills usually focusing on interviews and
to the Design Contest’s successin fostering environmental education awareness, students commonly state that it is the bestexperience of their time at College.Further, faculty advisors note the rigor of the competition, alignment and invaluablecontributions to ABET accreditation needs, and access to direct feedback from industry andgovernment agency professionals, who serve as judges. The WERC Environmental DesignContest has become the main engineering capstone project for a number of universities such asLouisiana State University, Montana Tech, University of Arkansas, the University of CaliforniaRiverside, University of New Hampshire, and the University of Idaho.Lastly, environmental professionals, who serve as judges for the competition
has authored and co-authored over 50 articles. Her publications have appeared in the Journal of Science Teacher Education, Journal of Research in Sci- ence Teaching, School Science and Mathematics, Science Scope, and Science and Children. Professor Czerniak is co-author of a textbook published by Routledge on project based science teaching. She also has five chapters in books and illustrated 12 children’s science education books. Most recently, Czerniak authored a chapter entitled Interdisciplinary Science Teaching in the Handbook of Research on Science Education, published by Lawrence Erlbaum and Associates. Professor Czerniak has been an author and director of numerous grant funded projects in excess of $30
engineer for world-class companies including Harley-Davidson, John Deere, and Oshkosh Defense and continues to provide workforce development consulting within this area.Dr. Nathalie Duval-Couetil, Purdue University, West Lafayette Nathalie Duval-Couetil is the Director of the Certificate in Entrepreneurship and Innovation Program, Associate Director of the Burton D. Morgan Center, and a Professor in the Department of Technology Leadership and Innovation at Purdue University. She is responsible for the launch and development of the university’s multidisciplinary undergraduate entrepreneurship program, which involves 1800 students from all majors per year. She has established entrepreneurship capstone, global
University. He is certified as a Project Management Professional (PMP), Senior Professional in Human Resources (SPHR & SHRM-SCP), in Alternate Dispute Resolution (ADR), and, in civil and domestic mediation. He is a State of Indiana Registered domestic mediator.Mr. Mark T. Schuver, Purdue University - West Lafayette Mark Schuver is the Director for the Center for Professional Studies in Technology and Applied Research (ProSTAR) in the Polytechnic Institute at Purdue University in West Lafayette, Indiana. He is responsible for the administration/operations of the Center with Program Management oversight of the Rolls-Royce Master of Science Degree, the Construction Management Master of Science Degree and Product Lifecy
sciences, technology, engineering, mathematics, and/or computational sciences. b. A professional skills component must be developed in consultation with leaders from the targeted industry, business, government, or nonprofit organizations. c. An experiential component that must include at least one capstone project, supervised collaboratively by faculty and employers, evaluated or graded by faculty, and typically developed with an employer(s), which integrates the practical application of scientific and professional knowledge, behavior, and skills. The experiential component typically includes a structured internship and provides an opportunity for students to
, mechanics of materials, calculus, and kinematics and dynamic. She has also developed undergraduate fluids laboratories and supervised many capstone projects. Her interest in SoTL is evidence-based teaching strategies, student engagement, faculty development, and teaching and learning communities. Dr. Yan is a registered P.Eng. with APEGBC and has served as reviewer for various international journals. c American Society for Engineering Education, 2016 Online homework assignments: instructor’s perspective and students’ responsesIntroductionWith the continuous development of technologies, creating online homework assignmentsbecomes possible. For large classes, online
Course and a Senior Capstone Project Design Course. College Student Journal, 47(2), 244-263. . Retrieved from http://search.proquest.com/docview/1416788555?accountid=7078 11. Townend, M. S. (2001). Integrating case studies in engineering mathematics: A response to SARTOR Page 26.665.9 3. Teaching in Higher Education, 6(2), 203-215.
, students enjoyed the exposure, and they believe that this curricular enhancement was abeneficial learning experience. Future work includes integration of the Analog Discovery in higher level ElectricalEngineering courses, Capstone projects, and undergraduate research projects. The impact of this Page 26.430.11effort on the transition of students between consecutive courses will also be studied.Acknowledgements:This work was supported by the National Science Foundation under NSF Award Number1255441 for Experimental Centric based engineering curriculum for HBCUs. The authors wouldlike to acknowledge the
-learning experiences and clinical immer- sion opportunities for students that improve their ability to execute the design process, Dr. Schmedlen has developed an undergraduate capstone design course, biomedical engineering laboratory, and clinical observation and needs finding course. In addition to teaching an introduction to biomedical engineering course for first-year students, she is also serves as an advisor for undeclared engineering undergraduates.Dr. Stephanie Marie Kusano, University of Michigan Stephanie Kusano is an assessment and evaluation postdoctoral research associate at the Center for Re- search on Learning and Teaching at University of Michigan. She has a Ph.D. in Engineering Education, M.S. in
conferences, workbooks and monographs.Dr. Phillip Albert Sanger, Purdue University, West Lafayette Dr. Sanger is a professor in the School of Engineering Technology in the College of Technology of Purdue University. His focus and passion is real world, industry based, senior capstone experiences both domes- tically and internationally. He has successfully developed this area at Purdue and at Western Carolina University. Prior to his career in academia, Dr. Sanger had a successful 30 year career working in and with industry managing and participating in broad range technology development and commercialization.Dr. Petr Osipov c American Society for Engineering Education, 2016 Best Practices of
Paper ID #23018Is a Virtual Reality-based Laboratory Experience a Viable Alternative to theReal Thing?James R. McCusker Ph.D., Wentworth Institute of Technology James R. McCusker is an Associate Professor at Wentworth Institute of Technology in the Department of Electrical Engineering. Since joining Wentworth in 2010, he has been heavily involved with an array of interdisciplinary design courses that range from introductory to capstone courses.Mr. Mohammed A. Almaghrabi, Wentworth Institute of Technology Mohammed A. Almaghrabi is a Trainee Engineer at ASM Process Automation, where he helps developing factory automation
, stormwater recycling, and overall sustainable water use within buildings. The current focus of his research is the implementation effects of low im- pact developments, net-zero schools and residences, and constructed wetlands into the built environment. He holds a Master’s degree in Building Construction and a Bachelor’s degree in Architecture, both from the University of Florida. Dr. Holtzhower has 9 years of professional construction experience including commercial construction management, electrical contracting and management with a fire protection con- tractor. The wide variety of projects includes a flagship institutional project, several municipal projects, K12 projects, office buildings, residential amenities and
Math Education, First Year Engineering Education conference and American Society for Engineering Education conference.Mr. Bruce Wellman, Olathe Engineering Academy at Northwest High School Bruce Wellman is a National Board Certified Teacher (NBCT, Chemistry) who teaches Engineering Chemistry as part of Engineering Academy at Olathe Northwest High School in Olathe, KS and serves as a Co-Principal Investigator on an NSF funded (DR K-12) research project entitled ”Building Informed Designers”. Wellman is a member of ASEE’s Board of Directors’ Committee on P-12 Engineering Educa- tion. Wellman completed his B.S. degree in general science (focus in chemistry) at Penn State University and his M.S. in Education at the