and2,041 graduate students enrolled in the fall of 2005. Over 50% of these students areenrolled in Science, Technology, Engineering, and Mathematics (STEM) programsRIT students can prepare for technical and professional careers in more than 200 differentacademic programs. Many of the academic offerings are unique or unusual: imagingscience, microelectronic engineering, software engineering, and telecommunicationsengineering technology; the programs draw students from every state and more than 80foreign countries. Many degree programs emphasize co-operative education whereperiods of formal instruction are combined with off-campus hands-on paid internshipswhich enhance the university’s “learn by doing” philosophy. RIT is respectedinternationally as
elementary education majors. She is a member of ASME, ASEE, SWE, ESW and EWB.Elise Amel, University of St. Thomas Professor Amel is an industrial/organizational psychologist. Her expertise includes survey development, psychometrics (reliability, validity, utility), data analysis, as well as feminist issues in psychology and business law. She is personally interested in how gender affects career choice. She believes strongly in the scientist-practitioner model, using her academic background to solve practical problems and using her problem solving experiences to enhance her teaching. She has received an award for excellence in service learning. Professor Amel also has specific expertise
struggling educators rather than penalize them. Finally,two cohorts mentioned the potential of generous monetary incentives to attract new educators toAmerican Indian schools; however the 2015 cohort felt that one negative consequence of thismethod may be the recruitment of teachers who are less devoted to the community and moreinterested in the salary. An insightful comment from one participant also noted that there isopportunity to stimulate interest in the teaching field among indigenous populations bypromoting careers in teaching to their own students.Table 1: Summary of Focus Group Consensus Number ofTools/attributes/actions that assist teachers in relating to and
. (2011). Engineering Education Discourses on Underrepresentation: Why Problematization Matters. International Journal of Engineering Education, 27(5), 1117. 4. Lewis, B. F. (2003). A critique of literature on the underrepresentation of African Americans in science: Directions for future research. Journal of Women and Minorities in Science and Engineering, 9(3&4). 5. Moore, J. L. (2006). A qualitative investigation of African American males' career trajectory in engineering: Implications for teachers, school counselors, and parents. Teachers College Record, 108(2), 246. 6. May, G. S., & Chubin, D. E. (2003). A retrospective on undergraduate engineering success for underrepresented minority
National Science Foun- dation and an associate dean and director of interdisciplinary graduate programs. Her research awards include U.S. Presidential Early Career Award for Scientists and Engineers (PECASE), a National Science Foundation CAREER award, and two outstanding publication awards from the American Educational Research Association for her journal articles. Dr. Borrego is Deputy Editor for Journal of Engineering Education and served on the board of the American Society for Engineering Education as Chair of Pro- fessional Interest Council IV. All of Dr. Borrego’s degrees are in Materials Science and Engineering. Her M.S. and Ph.D. are from Stanford University, and her B.S. is from University of Wisconsin
/08/08).4. McAlpine, L, Amundsen, C. and Turner, G. 2014. Identity-trajectory – Reframing early career academic experience. British Education Research Journal, 40(6): 952-969. http://onlinelibrary.wiley.com/doi/10.1002/berj.3123/abstract (2015/08/04).5. Gardner, A. and Willey, K. 2015. Engineering academics’ identity transitions in becoming established engineering education researchers. In Proceedings of the 6th Research in Engineering Education Symposium: Translating Research into Practice (REES), 9 pp. Dublin, Ireland. July 13-15.6. Walther, J., Sochacka, N. W. and Kellam, N. N. 2013. Quality in interpretive engineering education research: Reflections on an example study, Journal of Engineering Education, 102(4
STEM; (4) retaining students 5,6. Theglobal need for STEM major is evident but how can we attract more students into STEM fields?Numerous studies5,6,7,8,9 have shown that exposing students to STEM fields early in theireducation is the best time to increase their interest for science, engineering, and technology.Furthermore, students in an early age may have the wrong perception of what professionals inthose fields do10. Usually, for example, they associate engineering with just building or fixingthings8 or a profession for people who are good in math. Not having a clear picture of the widerange of possibilities after going into those fields, may discourage students from willing topursue an engineering or science degree for a career. Studies
career. The value was “1” if the studenteither remained or graduated in engineering for each year. The value was “0” if the studentswitched to a different curriculum, graduated in a different curriculum, dropped out, ortransferred out of the university. Retention was determined using the 14th day enrollment figuredefined by the registrar’s office, and graduation was recorded for fall, spring, and summer ofeach year. SI attendance was recorded using sign in sheets during each session. In previous studies,an individual student could be counted multiple times in the dataset if they had taken more thanone course where SI was offered. For this study, students were only counted once in the dataset;the percent attendance in every course the
FCS and the programs available thathave any relationship to engineering. The research bore out that the terminology varies greatlyfrom institution to institution, and focused exclusively on the AA degree. Thus, a studentdesiring to attend a FCS institution for the first two years and then transfer into an engineeringprogram does not necessarily have a clear pathway to success. What follows is a listing of allprograms related to engineering at each of the 28 FCS institutions.Table 3: Table of Colleges and the AA Degree Terminology and Program of Study Florida College System AA Degree Program of Study/Topics Institutions Alphabetically Terminology Broward College [15] AA by Career Separated into 8
launched hobby industries around inexpensive electronics,particularly microprocessor boards, with more capabilities and easy to program systems such asRaspberry Pi and Arduino. For individual developer or capable consumer those devices offer vastlevels of customization.When electrical and computer engineers are trained, it is imperative that nearly all acquire some levelof exposure to embedded microcontroller and associated software development skills to effectivelyfunction as engineers in their careers. The nature of work performed in industry changes as theyprogress in careers. Lack of such exposure and experience will constrain their opportunities indifferent technical fields and even managerial advancements.At this university, electrical
University CMT Faculty in 2006 as an Assistant Professor. She received her Bachelor of Science in Engineering Technology from the OSU Construction Management Department in 1998. She graduated with a Masters of Engineering Technology from Pittsburg State Uni- versity in 2002. She also earned a Specialist in Education Degree from Pittsburg State University in 2006. In 2010 she was promoted to Associate Professor. She completed her Doctorate in Higher Education from OSU in 2012 where she focused her research on women in Science, Technology, Engineering and Math. She accepted the position as Program Coordinator of Construction Management Technology at OSU in 2013. Dr. Yates began her teaching career at Pittsburg State
written work might include peer reviewsand written instructor’s feedback. Those methods are especially important in online studentlearning communities in which projects can mimic future job tasks as a part of a globalworkforce. Today, various STEM careers do include online data share of written documents andinclude collaborative writing tasks.10Writing in Math-Intensive CoursesStudents who are taking courses with intensive mathematics often have to create their homeworkor project reports using software that includes equation editing tools such as Equation Editor inMS Word or LaTeX, both of which influence students’ thinking and computation process.11 Awriting process is often defined as non-linear, a process that includes revisions, edits
and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?,” and is a Co-PI on the NSF Revolutionizing Engineering Departments grant ”Additive Innovation: An Educational Ecosystem of Making and Risk Taking.” He was named one of ASEE PRISM’s ”20 Faculty Under 40” in 2014
career in engineering, retention ofcertain subgroups of students, i.e. underrepresented minorities and first-generation students, isdifferentially lower6,7. This issue means that students who have the potential to be excellentengineers are subject to higher attrition rates, possibly due to their lack of preparation in areassuch as transitioning and being successful in college and engaging in strategies necessary to besuccessful engineering students. This demonstrates the need for increased focus on first-yearengineering education through strengthening a student’s commitment and efficiency to graduatewith an engineering degree.A study by Meyers et al.8 investigated why students stay in engineering and found that increasingthe first-year student’s
course, clear lines of communication are essentialto the success of the team building project [21]. The evidence supports that students realizecommunication is important, based on the comments many do not know how to communicatewithin their teams. The means of communication may include spoken , written [22], and generalskills required for lifelong interaction [23]. Students that have not achieved confidence in theseskills have issues navigating the workplace. Investigation on how to support the learning of theseskills before taking the Capstone courses is essential to these students as they graduate and moveinto careers, employers expect it [24-26].Industry partners and faculty mentors are essential to the successful team building
waste-to-energy system, Environment- Enhancing Energy (E2-Energy), that simultaneously produces biofuel, treats wet biowaste and captures carbon dioxide via algae growing and hydrothermal liquefaction (HTL). Wan-Ting’s ongoing work fo- cuses on upgrading of the HTL biocrude oil converted from wet biowaste into transportation fuels by distillation, esterification, thermal cracking, and hydroprocessing with catalysts. Wan-Ting has been a SWE member since 2012 and is aiming for a future career in academia.Chaoyang Liu, University of Illinois, Urbana-ChampaignProf. Rohit Bhargava, University of Illinois, Urbana-Champaign Rohit Bhargava is Founder Professor of Engineering at the University of Illinois at Urbana-Champaign
; 3:Likely; 4: Extremely likely Q4: To what extent do you 3 3 4 2.67 3 2 anticipate using what you’ve learnt in your future career?* We included the mean even though it’s not recommended by statisticians for Likert data because itseemed to add to the interpretability of the median and mode which alone would give the impression thatthe results were too similar across the board Post-activity Survey Responses 120 100 80 60 40 20 0 Fall 2017 Fall 2018 Fall 2017 Fall 2018 Fall 2017 Fall 2018 Fall 2017 Fall 2018 Q1 Q2 Q3
of Engineering(NAE) Grand Challenges of Engineering. To determine if students’ career paths generally led tosolutions for these problems, they were given statistics that showed the companies that are themajor employers for Rowan University graduates. This encouraged students to reflect on theirfuture career paths and to consider whether the companies they may work for are providingsolutions for either the problems students identified or the NAE Grand Challenges ofEngineering. The technical discussion focused on developing the chassis for the drone. Severalstudent groups also gave technical presentations on the topic of FAA regulations for smalldrones.During weeks four and five, we had students explore many issues related to
Paper ID #25320Leaders as CoachesDr. Meg Handley, Pennsylvania State University, University Park Meg Handley is currently the Associate Director for Engineering Leadership Outreach at Penn State University. Previously, Meg served as the Director of the Career & Corporate Connection’s office at the Smeal College of Business at Penn State University. Meg completed her PhD in Workforce Education at Penn State, where she focused on interpersonal behaviors and their impact on engineering leadership potential. Meg is a board certified coach with experience in developing students’ leadership and professional com
many career choices available to them. The engineering profession isalso about dedication to problem-solving and making the world sustainable.To prepare students in navigating the rigors of engineering programs and succeed in theengineering profession requires mastery of quantitative skills. These skills prepare students tohandle data and use numerical methods for systematic analysis and design of engineering systems.The students also follow engineering design processes to identify and solve complex problems.Engineering design is purposeful and requires formulation of an explicit goal. Engineers mustchoose the best possible option within the constraints of time, cost, tools, and materials. It is alsoa systematic and iterative process that
graduate career was the concept of reflexivity.This reflexivity was represented in my methodological coursework as a tool to be used whileconducting qualitative research. As a means of checks and balances, this tool’s purported usebecame a way to navigate through qualitative research in a manner that acknowledged therelationship between the researcher as an instrument and the processing of information over thecourse of research projects [8]. This navigation can be conceptualized in practices such as fieldtexts and reflections before, after, and during interaction with research participants as a means toshow proof of consideration of positionality, specifically for communities of color [9]. This tool,however, seemed to be accepted as a one size
teaching awards, and since 2016 he has been appointed to the Postgraduate Research Program at the National Energy Technology Laboratory (NETL) administered through Oak Ridge Institute for Science and Education (ORISE).Mr. Spencer Mark SullivanProf. Kevin Chen c American Society for Engineering Education, 2019 Project-Based Learning of Optics and Photonics: How to Teach a Stand- Alone Technical Elective “Niche” Course?AbstractAt the typical engineering school, lasers and optics is an elective “niche” area, often with astandalone senior course offering. This course is generally taken by students in their final yearswhen they are ready to graduate and start their careers or graduate school. For
undergraduate and graduate courses in power electronics, power systems, renewable energy, smart grids, control, electric machines, instrumentation, radar and remote sensing, numerical methods, space and atmosphere physics, and ap- plied physics. His research interests included power system stability, control and protection, renewable energy system analysis, assessment and design, smart microgrids, power electronics and electric machines for non-conventional energy conversion, remote sensing, wave and turbulence, numerical modeling, elec- tromagnetic compatibility and engineering education. During his career Dr. Belu published ten book chapters, several papers in referred journals and in conference proceedings in his areas of
thatcultivate gender equity. Within the system, at the institutional level, administrative leaders havethe power to create consistent models for gender equity policy implementation and practices. Atthe individual level, a coherent and consistent gender equity policy becomes a new norm inacademic culture translating into change in individual practices by faculty and administrators [9],[10]. Our three levels of transformation were selected to nurture a change in the culture of thestate BOR system and participating institutions as well as in the careers of women faculty inSTEM through establishing a supportive policy environment for sys-tem-wide gender equityinitiatives, university level changes in equitable implementation and increased faculty
confident that they had chosen the correct major, will do well in their major during the currentacademic year, were comfortable approaching a faculty member, and will graduate with a degreein their major. The responses for “I am well prepared for post-graduation plans” were more evenlydistributed. One 3rd-4th year student and one 4th-graduation student chose “slightly disagree”indicating that perhaps participating in such a program during earlier academic years would haveproven helpful in determining a career path.Figure 2In the survey, students were given three prompts to reflect on their experience. A simple wordfrequency query in NVIVO 12 pro on each prompt produced the respective word clouds. The top10 most frequent words (with stemmed words
https://citejournal.org/volume-11/issue-1-11/science/increasing-student-interest-and-attitudes-in-stem-professional-development-and-activities-to-engage-and-inspire-learners[15] A. Bandura (1982). Self-efficacy mechanism in human agency. American Psychologist. 37(2): 122–147. doi:10.1037/0003-066X.37.2.122.[16] R. W. Lent, S. D. Brown, & K. C. Larkin. (1986). Self-Efficacy in the Prediction ofAcademicPerformance and Perceived Career Options. Journal of Counseling Psychology, 33(3), 265-269.[17] B. A. Greene et al. (2004). Predicting high school students’ cognitiveengagement and achievement: Contributions of classroom perceptions and motivation.Contemporary Educational Psychology, Vol. 29 (2004) 462–482.[18] C. O. Walker & B. A. Greene
. Available: https://learn.org/articles/What_is_Tissue_Engineering.html[4] (2019, September 3). Biomedical Engineer: Career Definition, Job Outlook, and Education Requirements. Available: https://learn.org/articles/Biomedical_Engineer_Career_Definition_Job_Outlook_and_Ed ucation_Requirements.html[5] C. D. Lam, M.; Mehrpouyan, H.; Hughes, R. , "Summer Engineering Outreach Program for High School Students: Survey and Analysis," American Society for Engineering Education, 2014.[6] A. C. Warren, H.; Ludwig, M.; Heath, K.; Specking, E., "Engaging Underrespresented Students in Engineering through Targeted and Thematic Summer Camp Content (Work in Progress, Diversity)," American Society for
] reportedthe key factors of attrition in engineering disciplines to be classroom and academic climate,grades and conceptual understanding, self-efficacy and self-confidence, high school preparation,interest and career goals, and race and gender. Social-psychological threat from stereotypesattributed to women and ethnic minorities exacerbate issues associated with classroom climateand self-efficacy [8], [9].Significant efforts have been made to address retention in undergraduate engineering education.Research has found supplemental programs such as early research experiences, STEM learningcommunities, active learning in introductory courses, tutoring and mentoring to be effective tovarying degrees depending on the specific student’s situation [5], [10
and as a project management consultant. Her research contributes to the advancement of labor and personnel issues in engineering broadly and specifically in the construction industry through two research areas: untangling the complex relationship between activities people become involved in — operationalized as engagement — and the technical and professional out- comes gained — operationalized as competencies. The broader impact of this work lies in achieving and sustaining productive, diverse and inclusive project organizations composed of engaged, competent peo- ple. Dr. Simmons’ research is supported by awards from NSF, including a CAREER award. She oversees the Simmons Research Lab (www.denisersimmons.com
courses. For the past decade, Dr. Zurn-Birkhimer’s research has focused on broadening participation of women and underrepresented group in STEM fields. Recently, she has been investigating the intersec- tion of education and career path with cultural identity and is developing strategies to inform programming and policies that facilitate recruitment and retention of underrepresented populations in academia. In 2012 Dr. Zurn-Birkhimer was presented with an Outstanding Alumni Award from the Department of Earth, At- mospheric, and Planetary Sciences at Purdue University. She also serves on their Alumni Advisory Board. Dr. Zurn-Birkhimer earned her B.S. in Mathematics from the University of Minnesota, and an M.S. and Ph.D