proceed- ings. Dr. Tu has over 11 years of college teaching and research experiences in cybersecurity and digital forensics. Dr. Tu is a Certified Ethical Hacker (CEH), Certified Pen Tester (CPT), Certified Hacking and Forensics Investigator (CHFI), & AccessData Computer Examiner (ACE).Prof. Tae-Hoon Kim, Purdue University NorthwestMr. Justin David Heffron, Purdue University NorthwestMr. Jonathan Kakahiaka White c American Society for Engineering Education, 2017 PNW GenCyber Summer Camp: Game based Cybersecurity Education for High School Students Ge Jin1, Manghui Tu2, Tae-Hoon Kim3, Justin Heffron4, and Jonathan White5
Physics and interpret data. c An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. d An ability to function on multidisciplinary teams. e An ability to identify, formulate, and solve engineering problems. PSO f An understanding of professional and ethical responsibility. a 3 3 3 3 3 3 3 3 g An ability to communicate effectively. b
% Male (%) 20% Total (%) 15% 10% 5% 0%Figure 3. Other factors impacting development of student's successful engineering culture(knowledge, practices, and values) during semester. Gender breakdown.Female students viewed their interaction with others as more important than malestudents, who viewed “real world experiences” as most important. Work in other courseswas seen as important. Personal characteristics and experiences follow and some may bevia extra-curricular activities, clubs, etc. Some of the personal characteristics includepersonal attitudes, work ethic, time management, self-management, other varied personalinterests, learning ability, etc
). properties of materials and other STEM topicsE. Understand the social relevance and ethical The social relevance and ethical implications of Objective met. No recommendations implications of engineering activities related to manufacturing as a sociological phenomenon was manufacturing (human rights, environmental impact, presented and discussed. etc.) (Goal 2). Participants worked as teams within the university Objective met. Consider suggestion regardingF. Share knowledge, ideas and concepts working on hosting sites during which the teams developed grouping participants by background teams with professional and pre-service
emphasized: 1. “Global problems of the modern society. Culture, cultural value and cultural identity 2. “Technological breakthrough in the context of globalization” 3. “Ethics of communication in the modern society” 4. “Outstanding international scientists” 5. “Tolerance as an essential quality of an individual and a specialist in the modern society” 6. “Specialist of the 21st century”.Using the “Specialist of the 21st century” as an example, this theme can be integrated as amodule in the engineering disciplines. The purpose is to form self-determination, global andsocial awareness, and decision making through the social interactions within a group of highschool students through the completion of the following steps. In the first
research.Different ways of thinking facilitate different strategies and subsequent actions to innovate. Thestudy uses the Sustainability Education Framework for Teachers (Warren, Archambault, &Foley, 2014) that embraces four ways of thinking including futures, values, systems, andstrategic thinking to address complex educational challenges.Futures thinking focuses on working to address tomorrow’s problems today with anticipatoryapproaches to understand and prepare for future changes, problems, and solutions (Warren et al.,2014). Values thinking is about recognizing the concepts of ethics, equity, and social justice(Warren et al., 2014). It involves understanding these concepts in the context of varying culturesand accordingly making decisions. Systems
, 2012. Appendix A - Unit OutlineDay 1: Connect circuitry to neuroscience (Lesson 1, 50 min) ● Engage: Demonstrate gripper hand, let students test it out. ● Explore: On large whiteboards, sketch how the gripper hand works and list similarities and differences between circuits & human bodies. Discuss boards briefly. ● Engage: Show VEST and have students take notes on discussion questions, then discuss constraints and ethics (invasive/noninvasive, end-user input, cost, problems etc) ● Homework 0: Jigsaw one of the four articles about BCI/assistive devicesDay 2: Explore Sensor and Logic Components (Lesson 2, 50 min +) ● Elaborate: Jigsaw and discuss the articles, specifically regarding
selections based on a Likert scale of well, very well, exceptionally well, or not applicablebased on the degree to which he/she believed their mentor(s) performed various mentoringpractices.ResultsThe responses provided by the participants to the qualitative open-ended questions on the surveyrevealed several common emerging themes. For example, when asked to describe what factors wereused to select a mentor student participant responses were as follows: 1) professionalism of the mentor,2) previous advising experience with mentor, 3) person demonstrated consideration for the student ingiven situations, 4) person was eager to share information to assist with pursuing degree, 5) commonresearch interests with the mentor, and 6) work ethics of the mentor
, time, and performance and; 5. Become aware of ethical and societal concerns relating to the problems being solved.Using ABET’s concept of outcomes based learning, there should be learning outcomes that aremeasurable and targeted to help the students in reaching the stated objectives. The learningoutcomes for the workshop are listed below.The student will: 1. Apply the Lean LaunchPad process to engineering design; 2. Analyze a problem, and identify and define the requirements appropriate to a solution; 3. Design, implement, and evaluate an engineering design to meet desired needs; 4. Function effectively on teams to accomplish a common goal; 5. Understand professional, ethical, legal, security and social issues and
States. He is a licensed professional engineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a significant number of journal articles and book chapters on these topics.Dr. Beth Lin Hartmann P.E., Iowa State University Beth Lin Hartmann is a senior lecturer in construction engineering at Iowa State University. Hartmann served 20 years in the U.S. Navy Civil Engineer Corps before joining the faculty at Iowa State in 2009. She currently teaches the civil and construction engineering design-build
connect to the local clean tech energy start up community.3.4 Incorporating the NEET Ways of Thinking --- cross-school initiativesA major effort of the current school year is building bridges to other schools within MIT.NEET has identified resource experts from across the Institute to help develop pilot modules for theNEET Ways of Thinking3. This is detailed in Table 1 below. Work has begun on four of the Ways ofThinking --- Self-learning, Personal Skills (ethics), Critical Thinking and Creative Thinking (see Figure1 below), with the goal of piloting them in the NEET seminars and projects in 2019-20 and beyond.Figure 1: Implementing the NEET Ways of Thinking in Threads with Cross-School PartnersWe started with a Self-learning module that was
.) (c) Ability to design a system, • The system and/or process design consideration component, or process to meet based on the P3 (Planet, Prosperity, and People) desired needs within realistic (Fig. 1) constraints such as economic, • Relation of challenge to the P3 environmental, social, political, • Research activities that promote and incorporate ethical, health and safety, sustainability principles. manufacturability, and sustainability (d) Ability to function on • Most engineering programs have little or no multidisciplinary teams opportunities for students to work with students
working.Specifically, outcome 2 is that they would demonstrate “an ability to apply engineering design toproduce solutions that meet specified needs with consideration of public health, safety, andwelfare, as well as global, cultural, social, environmental, and economic factors [1].” Outcome 4requires “an ability to recognize ethical and professional responsibilities in engineering situationsand make informed judgments, which must consider the impact of engineering solutions inglobal, economic, environmental, and societal contexts.” Arguably outcomes 3 and 5, whichexpect that engineering graduates demonstrate the abilities to communicate with a range ofaudiences and to work effectively as team members, also require a working understanding ofmulticultural
for the changing nature of the job. Perhaps firefighters are prepared for the variety ofproblems in the field, but they do not have the capability to react at the moment and respondappropriately.Simulation (e.g. virtual reality simulation) can provide a safe, ethical, and cost-effectivealternative to practice in certain real fire scenes. This can serve in two ways: it can give a betterunderstanding of new trainees’ behavior and how can be shifted to safe behavior and offertrainees the opportunity to have effective and component training. By using simulations ofvirtual buildings with virtual fire environments, trainees can interact with a changingenvironment simulate various work-related procedures and/or judge whether a building design
the School. Pat teaches leadership, ethics, sustainabil- ity, and study abroad courses. She has held a number of leadership roles in the American Society for Engineering Education (ASEE) including four terms on the ASEE Board as well as serving two times as the Chair of Engineering Technology Council. Pat is a Fellow of ASEE. Her research interests include sustainability and study abroad education.Shawn Patrick Shawn Patrick is the Faculty Development Program and Evaluation Director of the Indiana University (IU) School of Medicine Dean’s Office of Faculty Affairs and Professional Development. Shawn is also an associate faculty in the Department of Technology Leadership & Communication through the Purdue
extensive practical knowledge; c. an ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments; d. an ability to function effectively as a member of a technical team; e. an ability to identify, analyze, and solve narrowly defined engineering technology problems; f. an ability to apply written, oral, and graphical communication in both technical and non- technical environments; and an ability to identify and use appropriate technical literature; g. an understanding of the need for and an ability to engage in self-directed continuing professional development; h. an understanding of and a commitment to address professional and ethical responsibilities
a rare opportunity for these students toperform undergraduate research. The research theme for this program is energy: specifically,catalysis, energy storage, and biofuels due to the pronounced expertise in these areas at LSU. Amajor strength of this REU program is the partnership with the LSU Business & TechnologyCenter which provides the REU students with training in technology transfer fundamentals andhow to pitch scientific ideas to non-scientists. In addition to the entrepreneurship training, theprogram offers weekly seminars in ethics, effective presenting, applying to graduate school,industrial safety, and topical seminars related to three main research areas of the programs. Thestudents were assessed individually (weekly reports
a design challenge. Communication Communication is essential to effective collaboration and to understanding the particular wants and needs of a “customer,” and to explaining and justifying the final design solution. Attention to Ethical considerations draw attention to the impacts of engineering on ethical people and the environment. considerationsFor eight months, the Fellows met twice a month with the program manager. Through thesemeetings the program manager was able to build a comfortable rapport with the group allowingthem to have conversations around sensitive subjects such as race and gender in the world ofscience, technology, engineering and math. These meetings also allowed the
following student outcomes included in ABETGeneral Criterion 3 for Engineering Technology Programs [8]: (a) An ability to apply knowledge of mathematics, science, and engineering; (b) An ability to design and conduct experiments, as well as to analyze and interpret data; (c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability; (e) An ability to identify, formulate, and solve engineering problems; (f) An understanding of professional and ethical responsibility; (k) An ability to use the techniques, skills, and modern engineering tools necessary for
faculty of the United States Naval Academy, Weapons and Systems Engineering Department in 2001. There, she has taught and developed engineering, design and leadership courses. She has received the Admiral Jay L. Johnson Professorship of Leadership and Ethics in 2015, and has served as Associate Chair, Weapons and Systems Engineering, and Director of Faculty and Staff Programs in the Stockade Center for Ethical Leadership.Ms. Nancy Dickson, Vanderbilt Nancy Dickson is currently the Program Director for the Hubert H. Humphrey Fellowship Program, a Fulbright exchange program for educational leaders from developing countries. Additionally, she trains and endorses high school teachers throughout the state in the area of
introductory course to befollowed with open-ended learning on a topic of personal interest is an optimum strategyfor meeting the needs of adult learners.”With regard to simultaneously supporting of learning “engineering skills” and“professional skills” (i.e., ABET student outcomes)10, all ten alumni agreed that skillsfrom “both-sets” were included successfully in the course. Specific skills mentioned bythe majority of alumni, included: 1) application of math, science, engineering; 2) analysisof data; 3) multidisciplinary teams (from the lab portion of the course); 4) professionaland ethical responsibility; 5) effective oral and written communication; 6) recognition ofneed for and ability to engage in life-long learning; and 7) knowledge of
), pp.222- 233.[11] T. Peck, S. Seinfeld, S. Aglioti and M. Slater, "Putting yourself in the skin of a black avatar reduces implicit racial bias", Consciousness and Cognition, vol. 22, no. 3, pp. 779- 787, 2013. Available: 10.1016/j.concog.2013.04.016.[12] H. Farmer and L. Maister, "Putting Ourselves in Another’s Skin: Using the Plasticity of Self-Perception to Enhance Empathy and Decrease Prejudice", Social Justice Research, vol. 30, no. 4, pp. 323-354, 2017. Available: 10.1007/s11211-017-0294-1.[13] Sue, D. W. (2010). Microaggressions in everyday life: Race, gender, and sexual orientation. John Wiley & Sons.[14] G. Behler. "Disability Simulations as a Teaching Tool: Some Ethical Issues and
socioeconomic class and social responsibility. She is currently completing a book manuscript on the intersection of engineering and corporate social responsibility. She is the author of Mining Coal and Un- dermining Gender: Rhythms of Work and Family in the American West (Rutgers University Press, 2014), which was funded by the National Science Foundation and National Endowment for the Humanities. In 2016 the National Academy of Engineering recognized her Corporate Social Responsibility course as a national exemplar in teaching engineering ethics. Professor Smith holds a PhD in Anthropology and a certificate in Women’s Studies from the University of Michigan and bachelor’s degrees in International Studies, Anthropology and
Department of Engineering Sciences and Materials at the University of Puerto Rico, Mayag¨uez Campus (UPRM). He earned B.S. degrees in Civil Engineering and Mathematics from Carnegie Mellon University (1993) and a Ph.D. in Theoretical and Applied Mechanics at Cornell University (1999). Prior to UPRM, Papadopoulos served on the faculty in the Department of Civil engineering and Mechanics at the University of Wisconsin, Milwaukee. Papadopoulos has diverse research and teaching interests in structural mechanics and bioconstruction (with emphasis in bamboo); appropriate technology; engineering ethics; and mechanics education. He has served as PI of several NSF-sponsored research projects and is co-author of Lying by
importance of ethics, decision making, team working, design, marketing and communications in solving a real-world problem, 2) Business students learn about importance of engineering technologies and engineering design and their role in innovation and ethics in solving a real-world problem, 3) Both group of students use presentations, project management, team work, and write-ups to enhance their learning experiences. The course also involves elements like real-world case studies, lab exercises, guestlectures and final comprehensive project involving both business and engineering technologiesand concepts. The NAE came up with fourteen grand challenges9, the world is currently facingand started the E4U2 video
this design project. 0.00 4.76 4.76 66.67 23.81My ability to formulate creative solutions to open-ended problems was enhanced 0.00 0.00 0.00 71.43 28.57by working on the project.The design project encouraged me to be innovative. 0.00 0.00 9.52 42.86 47.62The design project inspired me to deliver a quality design for the community. 0.00 0.00 4.76 61.90 33.33Working with a team on the design project enhanced my leadership skills. 0.00 0.00 19.05 61.90 19.05I became more aware of ethical issues encountered around the world while 0.00 4.76 9.52
academic carieer in 2006 as a professor at Tottori University. His current research area is flow and combustion analysis in reciprocating engine, innovations in education and engineering ethics education.. He is also serving as the head of Innovation Center for Engineering Education in joint appointment. Katsuyuki Ohsawa has published over 70 papers including over 40 papers in peer reviewed journals. He received best paper awards from Society of Automotive Engineers in Japan and Japan Gas Turbine Society. He also works as a member of supporting committee in JICA for Pan-Africa University. Prof Ohsawa received Ph D Nagoya University in 1992 and started academic carieer in 2006 as a professor at Tottori University
; catalytic reaction engineering for biomass conversion Chemical Eng.Catalysis & catalytic reaction engineering for reducing SO2 emissionsIntegration of photovoltaic thermal systems in residential buildings for energysaving Civil Eng.Application of seawater-source heat pump in hot climate3.2 Research trainingIt includes a formal training on the scientific method, the development of the research questionand research plan, the research methodology, the importance of social and economic aspects ofthe research, and the professional ethics in research. The training is scheduled to be
extensiveexperience in focus group facilitation. All aspects of this study received ethics approval throughthe institution’s delegated ethics review process. Two focus groups, of four first-year studentseach, were conducted, each lasting approximately one hour. Students were asked theirimpression of each RLO and encouraged to discuss their opinions of each activity including pros,cons and areas for improvement. Each session was audio recorded.The inclusion criterion was enrollment in MSE101, the introductory materials science andengineering course being taught in the Winter 2014 semester at the University of Toronto.Students were not required to have used the RLO. Students were asked to participate on avoluntary basis only.In addition to the audio recording
forces on various devices3 Equilibrium Lab: Longboard -Trucks Apply equilibrium conditions to planar systems4 Free Body Diagrams Working with Physical Samples Draw FBDs based on (Small Group Problem Solving) physical systems5 Trusses Hyatt Ethics Case (Small Group Problem Solving)6 Trusses Lab: Bridge Design In a team, design, analyze, build and test a truss