(focused) schools or are designated a STEM school. In SouthCarolina, a number of elementary and middle schools have been designated a STEM school.These schools seek out annual field trips to allow their students to have firsthand STEM Page 26.1395.2experiences such as laboratory experiences within college level courses, aquariums, architecturalfirms, research labs, and manufacturing companies to mention a few.Gifted and talented Fourth and Fifth Grade students from Richland School District 2 schoolshave been conducting a field study (ALERT)2 at The Citadel every other year. Recently, the offyear visit is with an architectural firm at the school and
well as school and camp curriculums centered around Artificial Intelligence. Previously, he has worked as an instructor at Mathnasium, where he taught math to K-12, and as a lab assistant in an undergraduate laboratory at the University of Florida.Jacob Casey Yarick, University of Florida Jacob Yarick is an undergraduate student at the University of Florida pursuing a Bachelor of Science in Aerospace Engineering and Bachelor of Science in Astrophysics. He works under the EQuIPD program where he designs, creates, and teaches lessons related to Python programming and Artificial Intelligence. Previously, he has worked at the Kika Silva Pla Planetarium, and the Calusa Nature Center & Planetarium. He has also tutored
see when preferential treatment was given to white students overstudents of color in engineering spaces. Often these events made participants questionwhether or not they belonged in the spaces they occupied because they were frequentlyremoved from those spaces automatically. For instance, Luz described her experience in thebiomedical engineering laboratory as she was doing research over the summer as detrimentalto her decision to continue in engineering for graduate school. She was under the supervisionof a white Ph.D. student, and worked in the lab with another Latina student and one whitestudent. She described the preferential treatment from the Ph.D. student toward his whitementee as follows: You could just tell, like, if we asked
competency with engineering conceptsand design approaches could focus solely on understanding the basics of how the devicescommunicate and how basic mathematics, such as trigonometry, can be used to develop codethat generates real-world movement. Meanwhile, higher-level courses where students are moreadept at use of instrumentation and component manipulation could incorporate those skills intothe troubleshooting process, or be presented with added challenges requiring motivation ofadvanced theoretical knowledge and laboratory techniques toward development of a feasiblesolution.The literature indicated that, in programs where a project-based approach to design integrationwas adopted, improvements in retention rates, increased student satisfaction
college students to expose and increase their interest in pursuing Science Technology Engineering and Mathematics (STEM) fields. For over a decade now, Dr. Astatke has facilitated the donation of 250+ Electrical and Computer Engineering (ECE) portable laboratory instrumentation boards and has conducted capacity-building training workshops for five universities in Ethiopia. This work has improved the education of thousands of ECE students in Ethiopia annually. He has expanded his services to other African countries such as Nigeria, South Africa, and Cameroon. Dr. Astatke is recipient of several awards, including the 2016 Global Engineering Deans Council (GEDC)-Airbus Diversity Award, 2016 Black Engineer of the Year
-- and allowing it to guide one’s behaviorThe study of this domain focuses on determining what teaching practices produce the most positiveattitudes or connections to a concept and how feelings and behaviors change throughout theprocess of learning a concept/topic. This domain is harder to study and quantify since it is moreabstract compared to the cognitive domain. Also, it can be hard to separate positive feelingstowards the information and process of learning of a concept versus positive feelings created bygenerally positive social interactions during certain activities, such as during a laboratory session.Thus, our research aims to find general trends based on students' experiences, perceptions, and/orthoughts towards engineering classes and
faculty fellowships with the Los Alamos National Laboratory, Pacific Northwest National Laboratory, and the Air Force Institute of Technology - Wright Patterson Air Force Base. He is currently on sabbatical working at the US Environmental Protection Agency. He is a Princi- pal Investigator of the National Science Foundation-funded $1.5 Million grant to enhance freshman and sophomore engineering students’ learning experiences. His research is in the areas of fate and transport of organic and inorganic pollutants in the environment. American c Society for Engineering Education, 2021 2021 ASEE Southeastern Section Conference
create the final product (a wolf headnutcracker), as shown in Figure 3. The project includes cost analysis and a production plan, includingdifferent types of machining, casting, metal forming, welding, plating, and assembly processes.2.4 EN462 Industrial Robotics Course The Industrial Robotics course is a three-credit hour, senior-level, regular, one semester courseoffered to about 20 engineering students enrolled in the BSE Program with Mechatronics Specialization.The course includes two hours of lecture and two contact hours of laboratory exercises per week. Thisfirst course in robotics is intended to enable students to design, control, and maintain robots and robotic-based systems. The course provides engineering students with both the
SENCER/NYP, and Long Island Community Foundation ”Removing Barriers and Strengthening STEM capacity at Suffolk County Community College” grants, Dr. Foley served as the STEM Coordi- nator for all SCCC NSF STEM Scholars on three campuses. Dr. Foley has also served on national grant projects involving curricular reform for chemistry education. Her experiences at the State University of New York at Stony Brook, Suffolk County Community College, and Brookhaven National Laboratory has enabled her to focus upon the adaptation and implementation of innovations in classroom learning and undergraduate research through curricular innovation and technology based software for the community college application. Dr. Foley is a
American c Society for Engineering Education, 2020 Paper ID #31573 presentations, and his research has attracted more than $30M in external funding. He is a Fellow Mem- ber of the American Society of Mechanical Engineering (ASME), and Vice-Chairman of the American Meteorological Society Board on the Urban Environment. He was appointed in 2015 by the Mayor of the City as Member of the Climate Change Panel for the City of New York, and more recently as Senior Visiting Scientist of the Beijing Institute of Urban Meteorology and of Brookhaven National Laboratory. He was named in 2019 the
Colorado State University (Fort Collins, CO, USA) in 2018. There, she gained experience working as a graduate teaching assistant for computer aided engineering, biomedical engineering capstone design, and biomedical engineering introductory classes. She also served as a Grad- uate Teaching Fellow for the Walter Scott, Jr. College of Engineering during the 2016/2017 academic year. Nicole is currently an instructional post-doctoral fellow in the Transforming Engineering Education Laboratory within the Biomedical Engineering Department at the University of Michigan. Through this fellowship, she spent the 2019/2020 academic year teaching and assisting in curriculum development at Shantou University (Guangdong Province
contacted their faculty advisor found the relationship important intheir laboratory experience (Avent et al., 2018). Industry-mentors, professionals who have beentrained in the mentorship role, surprisingly were observed in one article (Ilumoka et al., 2017).Teacher-mentors were regarded as the highest benefit in student motivation toward STEM(Musavi et al. 2018) Graduate Students and Researchers. Graduate students and postdoctoral workers served as mentors exclusively in researchapprenticeships. These researchers worked directly with apprentices, providing guidance inexperiments and laboratory protocols. One article referenced the negative interaction a studentexperienced working with a researcher, however, upon questioning the student
to understand some concepts that I’m not familiar with at all © American Society for Engineering Education, 2021 2021 ASEE Illinois-Indiana Section Conference Proceedings | Paper ID 35162 o I think the most difficult part will be getting a good grasp on the concept of my group research topic. Lack of in-person or hands-on experience (4 mentions) o I think the fact that the research is virtual may be challenging o I think the fact that we will not be working in campus and not being able to work in the laboratory Getting started (1 mention) o It is just hard to get started, and knowing how to operate with the team but it
summer camps geared towards middle school, high school, and community college students to expose and increase their inter- est in pursuing Science Technology Engineering and Mathematics (STEM) fields. Dr. Astatke travels to Ethiopia every summer to provide training and guest lectures related to the use of the mobile laboratory technology and pedagogy to enhance the ECE curriculum at five different universities.Prof. Kenneth A Connor, Rensselaer Polytechnic Institute Kenneth Connor is a professor in the Department of Electrical, Computer, and Systems Engineering (ECSE) where he teaches courses on electromagnetics, electronics and instrumentation, plasma physics, electric power, and general engineering. His research
solution is a new cloud service known as HPC-as-a-Service.In this paper, we present an HPCaaS platform called ASETS which uses Software DefinedNetworking (SDN) technologies to smooth the execution of parallel tasks in the cloud. Further,we provide application examples that could be used in a typical introductory parallel programingcourse. We argue that HPCaaS platform like ASETS can significantly benefit the users of HPCin the cloud as if their program is running on a dedicated hardware in their own laboratory. Thisis especially advantageous for students and educators who need not to deal with the underlyingcomplexities of the cloud.1. IntroductionCloud Computing according to NIST1 is a shared pool of configurable resources offeringservices with
in design exercises and experiences throughout their academicundergraduate careers, and provides student support in an innovative configuration of cascadedpeer-mentoring. In addition, the project incorporates engineering design experiences across theundergraduate curriculum with linkages to the university’s engineering innovation laboratory foraccess to industry projects. This contributes to increased student retention and persistence tograduation. CASCADE uses research proven practices to create a retention program based onintegrated curriculum, peer-mentoring, learning communities, and efforts that build innovation andcreativity into the engineering curriculum. The design efforts introduced by this project verticallyalign PBL that is fused
as designing and testing of propulsion systems including design and development of pilot testing facility, mechanical instrumentation, and industrial applications of aircraft engines. Also, in the past 10 years she gained experience in teaching ME and ET courses in both quality control and quality assurance areas as well as in thermal-fluid, energy conversion and mechanical areas from various levels of instruction and addressed to a broad spectrum of students, from freshmen to seniors, from high school graduates to adult learners. She also has extended experience in curriculum development. Dr Husanu developed laboratory activities for Measurement and Instrumentation course as well as for quality control undergraduate
the winter break, the program introduces freshmen and risingsophomores to scientific research as well as a variety of topics and skills such as applying forinternships; introduction to the research process; university laboratory tours; library presentationon conducting literature reviews; the university transfer process for community college students;technical presentation skills; and project-specific topics including experimental methods,instrumentation, and data acquisition and error analysis. The paper provides a detaileddescription of the program curriculum, results from the Winter 2016 cohort, and key findings onprogram outcomes relating to changes in students’ engagement in their academics, confidence inapplying for and obtaining
. He further statedthat when evaluating a possible investment, a key criterion in assessing investment risk is theability of the regional infrastructure and population base to be able to locally produce at least 30percent of the doctoral level engineering and science talent that will be required by the startupfirm. Thus, access to advanced academic research and development laboratories and advancedacademic programs in engineering is critical to success.Because of the need to further develop the high-tech economy, and with support from localindustry and the state government, three doctoral programs were developed over the last tenyears. The following three programs will be discussed, Electrical and Computer Engineering(ECE), the
Architectures, and Low Power and Reliability-Aware VLSI circuits. He has also been a Graduate Teaching Assistant (GTA) for Department of Electrical Engineering and Computer Science of UCF from 2014 to 2018. His educational interests are innovations and laboratory-based instructions, technology-enabled learning, and feedback driven grading approaches. He is the recipient of the Award of Excellence by a GTA for the academic year of 2015-2016 at UCF.Dr. Ramtin Zand, University of Central Florida Ramtin Zand received B.Sc. degree in Electrical Engineering in 2010 from IKIU, Iran. He received his M.Sc. degree in Digital Electronics from Sharif University of Technology, Tehran, Iran, in 2012. He is a Ph.D. Candidate in
University ofMichigan, students are required to take 41 credits of engineering science courses (32% of thetotal credits required for graduation) and only 19 credits of design and laboratory courses (14.8%of total credits). Furthermore, of the 11 current ABET Student Outcomes only one of these, a) anability to apply knowledge of mathematics, science, and engineering, directly speaks to thecontent of these engineering science courses [1].Despite the prominence of engineering science courses in the curriculum, these courses havebeen studied less in engineering education research than design courses [2]. Ideally, theseengineering science courses should give students the theoretical background that they can applyin engineering design courses, on student
(IBBME), University of Toronto. In addition to instruction, she has acted as the Associate Director, Undergraduate Programs at IBBME as well as the Associate Chair, Foundation Years in the Division of Engineering Science. Currently an Associate Professor, Teaching Stream, she serves as faculty supervisor for the Discovery program and is program co-director for the Igniting Youth Curiosity in STEM Program. Dawn was a 2017 Early Career Teaching Award recipient at U of T and was named the 2016 Wighton Fellow for excellence in development and teaching of laboratory-based courses in Canadian UG engineering programs. c American Society for Engineering Education, 2020 Discovery
valuable addition tothe electrical engineering curriculum.We argue that the reasons behind the technical choices, their impact on the resource consumptionand the performance versus flexibility tradeoffs are relevant for cellular communicationsstandards education. Moreover, project management, team work, development of realisticexpectations and practical solutions are skills that are much demanded by industry in addition todomain-specific technical specialization. We therefore propose a methodology for teachingstandards that creates favorable conditions for developing those skills.The combination of lecture-centered education [2] with laboratory-centered approaches [3], [4],has been adopted in the engineering curriculum when the Conceive, Design
Paper ID #22785Citizen Scientists Engagement in Air Quality MeasurementsProf. Anthony Butterfield, University of Utah Anthony Butterfield is an Assistant Professor (Lecturing) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory and freshman design laboratory. His research interests focus on undergraduate education, targeted drug delivery, photobioreactor design, and instrumentation.Katrina My Quyen Le, AMES High School
the needs of a mobile robotics course for students from multiple disciplines. This robot systemcan be programmed in JAVA, Python, Lua or C. It can also be programmed with various devicessuch as smartphones, tablets, or the traditional laptop computer. This mobile robotics coursecurrently uses off the shelf or slightly modified off the shelf robots to teach robotics. The initialresults will indicate that it is possible to use this modular platform in its various modes to createsome of the basic behaviors required for the laboratory assignments.IntroductionThis paper will present the design of a modular educational robotics platform to handle thedivergent skill sets of a multidisciplinary population in an introductory mobile robotics course
and sociocultural norms as well as in classic studies of socialization in scientific andtechnical careers, which don’t mention novices’ existing knowledge, skills, or identities (e.g.,[17], [18], [19]). Despite ongoing critiques of this mindset as inaccurate and a barrier to learningand identity formation (e.g., [20], [21], [22]), some academic communities, such as theengineering research laboratory groups that co-author Wylie studies, continue to talk aboutnovices according to this model. This approach does great injustice to newcomers to expertcommunities as well as robs experts of opportunities to learn from “a wisdom of peripherality”([23] p. 216), i.e., the invaluable perspective of outsiders. In ongoing observations and interviewsof
well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone De- sign courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning and retention.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and assistant professor at the University of New Mexico in the Organization, Information & Learning Sciences program
-year undergraduate student at Northeastern University, majoring in chemical engi- neering and pursuing minors in mathematics and material science and engineering. Outside of class, Kaeli works as a chemistry tutor and class grader, and she participates in undergraduate research in a materials science laboratory on campus. She also has held co-op positions with Rogers Corporation’s Innovation Center, the National Renewable Energy Lab, and Lockheed Martin Energy Storage.Mr. Bradley Joseph Priem, Northeastern University Bradley Priem is a third year undergraduate student at Northeastern University, majoring in chemical en- gineering and minoring in biochemical engineering. He has been involved in the Connections Chemistry
Senior Research Associate (Auditory Protection and Prevention - US Army Aeromedical Research Laboratory, Fort Rucker Alabama), Joint Adjunct Assistant Professor in the Department of Applied Engineering Technology and Built Environment at North Caro- line Agricultural and Technical State University, as a visiting professor at University of Ibadan, Nigeria, Industrial and Production Engineering Department, as a research assistant with Dr. Denise Tucker at University of North Carolina Greensboro in the Department of Communication Sciences & Disorders, School of Health and Human Science, as a Facilities Engineer at Maryland Motor Vehicle Administra- tion Glenn Burnie. Dr. Fasanya holds a B.S. in mechanical engineering