%), are White/Caucasian(80.49%) and are male (82.93%). The remainder of the respondents were: Asian Americans(7.32%), Black/African Americans (4.88%), Foreign Nationals (4.88%),Hispanics/Latinos/Mexican Americans and female (14.63%). Participants were asked about their team training experiences and how they use teams intheir classroom. Findings show that more than two thirds (68.29%) of respondents haveparticipated in a workshop on effective teaming or teaming techniques. Among all therespondents, 80.49% use teams for design projects suggesting that they consider this an essentialtraining activity in preparing students for the work place. More than half of those surveyed(51.22%) use teams for homework/problem activities, 70.73% for in
Society for Engineering Education Session: 22472. ODU Engineering Technology Studies 33Students must complete 33 credits of Engineering Technology courses in their selected studyarea. This group of courses must include a capstone senior project in which the studentdemonstrates proficiency in the selected area. Several popular options are described in the tablebelow.3. Electives 6Selected from technology, business, or other area supporting student career interest.Total Upper Division Credits beyond AAS
course is taken in preparation for the senior year capstone design project.Components of this course include approaches to design, teamwork, project definition, projectplanning, understanding the customer, product specifications, concept generation, andpresentation skills. Usually, class time is split between instructor-led teaching of concepts, in-class individual and small group exercises, and a semester-long team design project.To increase connections to the needs of a customer and to focus creativity and design choices oncreating value-added products, open-ended in-class activities are conducted throughout thesemester. Students are presented with hypothetical situations with constrained design choices,unique customer requirements, and a
3.3 shows defective submissions ofprogramming students for the assignments and exams.Section 4 of this paper presents some remedies to the programming problems with pair programming, instructor’s fixes(educating the students on NOT doing the hard code approach, on teaching the students to do test and debug byincorporating several test cases in every programming assignment etc.Section 5 concludes this paper.2. Common Programming Errors (when students take the classes)2.1 When do Programming Problems Happen?Students of programming can have problems at the time when they take the programming class(es), or later on when theyneed to use their programming skills learned earlier in either a later class, capstone project in school, internship project
all require critical thinking skills. Critical thinking can be incorporatedinto engineering classes in a variety of ways including writing assignments, active learningstrategies, project-based design experiences, and course redesign. Clearly, accurately, andconsistently assessing critical thinking across engineering courses can be challenging.The J.B. Speed School of Engineering began revising core courses in the undergraduatecurriculum to align with goals and objectives of i2a and the ABET criteria. As a common coursefor all entering engineering students, Introduction to Engineering was the logical course tointroduce critical thinking to engineering students and to prepare them for the critical thinkingdemands they will experience in their
AC 2011-1477: DEVELOPMENT OF AN UNDERGRADUATE RESEARCHLABORATORYAdrian Ieta, Oswego State University College Adrian Ieta (M’99) received the B.Sc. degree in physics from the University of Timisoara, Timisoara, Romania, in 1984, the B.E.Sc. degree in electrical engineering from the ”Politehnica” University of Timisoara, Timisoara, in 1992, and the M.E.Sc. degree and the Ph.D. degree in electrical and computer engineering from The University of the Western Ontario, London, ON, Canada, in 1999 and 2004, re- spectively. He was with the Applied Electrostatics Research Centre and the Digital Electronics Research Group, The University of Western Ontario, where he worked on industrial projects and taught. He is
be available. These methods allow us to probe into areasand tease out problems that may exist and may help to define a problem for future quantitativestudy. They also allow us to understand why projects succeed or fail in certain environments. Inthis paper we offer a model that uses qualitative assessment techniques to support the Checkstage of the PDCA model in a program with undergraduate engineering curriculum renewal as itsgoal. This 10-step process includes site visits, participant review, and an ongoing formalfeedback process about improvements that can be made based on the collected data. The modelis intended to provide a framework to others who may be in a position to evaluate a group ofprograms such as a coalition of institutions or
a moreinterpersonal communication skill set in students. Indeed, as Trevelyan pointed out in his studyof communication practices of engineers in Australia, “assessment of communication inengineering education is misaligned with practice requirements”5. To better align educationalassessment of communication practices in the first place, educators need to know more abouthow this skill set is defined and practiced in engineering workplaces. This paper intends to helpshed light on that question through reporting on the ways that practicing engineers valued,defined, and practiced “communication skills”.Study Description and MethodsThis study is part of a larger project sponsored by the National Science Foundation whichexamines the alignment of
Senior Capstone projects available to all Computer Science majors.In partial fulfillment of the requirements of CSF 4302, all Fellows will present their thesis duringthe annual ECS Scholar’s Day, even if their work is not yet complete.The Fellow’s Research Advisor will direct the thesis. In addition, Fellows must invite a secondprofessor in that field as well as a third professor outside of that field to serve as readers. In thespring of the junior year, Scholars register for CSF 4v01 to be taken in the fall of the senior year.A detailed outline, the first chapter of the thesis, and a bibliography must be submitted to theresearch advisor and the CSF Director at the end of that semester. In the fall of the senior year,students register for CSF
2. Electro Optical Devices 3. Fiber Optics 4. Lasers Systems Robotics Specialty 5. Advanced Programmable Logic Controllers 6. Intro to Robotic Systems 7. Manufacturing Processes 8. Capstone Project Telecommunications Specialty 9. Computer Repair 10. Wireless Networks 11. Wireless Security 12. Telecommunication Systems TOTAL 60 Page 24.1151.6Replicating the Photonics Systems Technician Curriculum ModelIn 2014, 28 colleges across the U.S. have adopted the Photonics Systems Technician
engineering at Michigan State University. She teaches a range of courses from the introduction to engineering course to the upperclass courses on water/wastewater treatment, air pollution engineering and science, and capstone design . She was recently involved in the development of a B.S. program in environmental engineering Dr. Masten’s research involves the use of chemical oxidants for the remediation of soils, water, and leachates contaminated with hazardous organic chemicals. Dr. Masten has been working etensively to develop water treatment technologies that are more effective and suitable for use in decentralized water treatment systems. Over the last year, she has also begun to evaluate water treatment technologies
Paper ID #6035Using Leadership Education Practices to Enhance Freshmen EngineeringStudent Interviewing SkillsDr. David Bayless, Ohio University Dr. Bayless is the Loehr professor of Mechanical Engineering and the director of Ohio University’s Center of Excellence in Energy and the Environment. He is also the director of the Robe Leadership Institute, director of the Center for Algal Engineering Research and Commercialization (an Ohio Third Frontier Wright Project), and director of the Ohio Coal Research Center at Ohio University, where he is engaged in the development of energy and environmental technology, such as
-Based Enterprise”, and “6: MBSE Capstone Project”. These aredesigned to provide students with enough knowledge and practice to enable them to startapplying MBSE in their professional environments.The interview protocol was constructed to understand instructor experiences using the modules,the scaffoldings they provided to learners, and the effectiveness of the modules as perceived bythem. All the participants in this WIP were involved in the module design process as contentselectors or as content producers. Content selectors were responsible for content selection andestablishing main course goals in the modules while collaborating with instructional designers onthe pedagogical approach. Content producers were in charge of transferring the
nanotechnology andallowing the students to develop substantive capstone research projects. The undergraduate andgraduate curricula couples the intellectual and technological resources of CNSE's NanoTech 6 Proceedings of 2015 St. Lawrence Section of the American Society for Engineering EducationComplex. CNSE is pioneering an institutional model that integrates closely the educationalactivity of the students with the academic and industrial research. This concept offers multipleadvantages. Among them it provides access to state-of-the-art technologies, equipment, andprocesses, expanding the range of research that can be undertaken along the educationalinstruction. In return, the industrial
enhancing our student’s skills in SolidWorks. We expect ourseniors to use SolidWorks extensively in our capstone senior design, but our students learnSolidWorks formally only in their first semester. By the fourth semester Dynamics course theyhave already become a little rusty. If we do not require students to use SolidWorks as an integralpart of their intermediate coursework; we should show little surprise when they proclaim as seniorsthat they have forgotten it all.Results The four benefits described above are simply conjectured by the author. A survey wasadministered to students having just completed the Dynamics course in the spring of 2013 and 6
subjects in testing of engineering capstone design projects require oversight by an IRB?," in 2017 ASEE Annual Conference & Exposition, 2017.[17] L. R. Lattuca, I. Bergom, and D. B. Knight, "Professional Development, Departmental Contexts, and Use of Instructional Strategies," Journal of Engineering Education, vol. 103, no. 4, pp. 549-572, 2014, doi: https://doi.org/10.1002/jee.20055.[18] B. Kern, G. Mettetal, M. Dixson, and R. K. Morgan, "The role of SoTL in the academy: Upon the 25th anniversary of Boyer’s Scholarship Reconsidered," Journal of the Scholarship of Teaching and Learning, pp. 1-14, 2015.[19] J. Fanghanel, J. Pritchard, J. Potter, and G. Wisker, "Defining and supporting the Scholarship of
Paper ID #46071WIP: Scaffolding Study Strategies in First-Year EngineeringDr. Chamille Lescott, Northwestern University Chamille Lescott is an Assistant Professor of Instruction in the McCormick School of Engineering and Applied Science at Northwestern University. She advises first-year engineering students as a member of the Undergraduate Engineering Office, teaches first-year and capstone-level design coursework, and serves as the Director of the Biomedical Engineering Master’s Program. Her research interests center around academic resource use, metacognition, and the first-year engineering experience.Ilya Mikhelson
US industrial PhD track v. Block grants to universities to educate STEM doctoral students beyond technical expertise vi. Celebrate alumni outside academia who are making a difference in the world vii. Centers of excellence for engaging studentsviii. Support networks for underrepresented students ix. Doctoral analog to undergraduate capstone collaboration to solve current problems x. Co-advisors / mentors from industry xi. Industry involvement in developing classes, programs xii. Refer undergraduate interns in industry to relevant graduate programs depending on their interests and skillsxiii. Engage industry researchers to teach the skillsets needed, and to establish robust mentoringxiv. Engage
Champaign Alison Kerr received a doctoral degree in Industrial-Organizational Psychology from The University of Tulsa. Her research interests include training development and evaluation as explored across a variety of academic disciplines and organizational settings. She is currently assisting on a number of training projects aimed at developing engineering students on relevant non-technical professional skills including ethical practice and presentation. American c Society for Engineering Education, 2021Chemical Engineers’ Experiences of Ethics in the Health Products IndustryAbstractWhile ethics education for chemical engineers has been emphasized, potential
, engineeringdesign, and project management(f) an understanding of professional and ethical responsibility: understand professional and ethicalresponsibilities as they apply to both particular engineering projects and to the engineering profession as a whole(g) an ability to communicate effectively with both expert and non-expert audiences(h) the broad education necessary to understand the impact of engineering solutions in a global andsocietal context: understand the impact of engineering solutions in a global and social context and use thatunderstanding in the formulation of engineering problems, solutions, and designs(i) a recognition of the need for, and ability to engage in, lifelong learning: the development of the researchand analytical skills
Operations experiments, and incorporating Design throughout the Chemical Engineering curricu- lum. She currently works as a freelance Engineering Education Consultant and Chemical Engineer. She is the Project Manager for NSF grant #1623105, IUSE/PFE:RED: FACETS: Formation of Accomplished Chemical Engineers for Transforming Society, for which she is advising and coordinating assessment.Dr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and associate professor at the University of New Mexico in the Organization, Information & Learning Sciences program and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is
was chosen to allow experiential learning within thethermal fluid laboratory course for both face-to-face and remote access by students. The heatexchanger system was funded and supported by the Department of Mechanical Engineering at TheUniversity of Texas at Tyler (UT-Tyler) where groups of students designed and built the system inphases. A team of seniors started the first phase of the project by designing and simulating a heatexchanger system as part of their capstone design course. The results of this phase helped start thesecond phase where multiple groups of the following class of seniors worked on the seconditeration of the heat exchanger design and successfully constructed subsystems as prototypes overthe past three years. The final
approach between instructorsand teaching assistants is crucial.There are numerous successful collaborative models for teaching. While the majority of researchon collaborative teaching involve faculty to faculty collaborations [3-5], there are teachingcollaborations that exist between faculty and undergraduate students [6, 7] or faculty andgraduate students (in their PhD programs) [8]. However, there is only limited research examiningteaching collaborations that involve among undergraduate and graduate students in a course.In this study, we examine the complementarity of roles between IAIs and TAs in the remoteteaching and learning in the Faculty of Engineering at McMaster University’s first-year coursetitled Integrated Cornerstone Design Projects
, quiet environment and then 5 min afterwards to write down theirreflections. During the session, some students shared their experiences with the visualizationand described their inner mentor.Session 2: Fear and Unhooking from Praise and CriticismThis session began with a discussion on distinctions of fear brought forward in the book.Pachad is defined as the fear of projected or imagined things. Yirah is a different fear thatcomes forward when connected to a calling or life’s dream. This inspired space brings outfeelings of expansiveness, exhilaration, or awe. In the session there was time to journal aboutexperiences with both fears. Then if there were willing participants, they shared experiences ofyirah with the group.The second part of the
for engineering educators by providing atransferable, easy-to-implement reflection activity that can be implemented in any engineeringcourse that includes a presentation assignment.Reflection to Enhance Learning and AssessmentReflection as a teaching approach is becoming increasingly recognized in engineering education[1, 2], where it is often used to promote cognitive development and can help students learn morefrom projects, internships, and other educational experiences [3-7]. For example, a common in-class reflective activity is the “exam wrapper”: shortly after an exam, students articulate whatthey did that helped them do well on the exam and what they could do differently to improvetheir performance on a future exam.Recently, reflection
which they respondedpreviously. The same pre- and post-activities were used for each iteration of the course. Foriteration six, only data from the pre-activity are included in this study. Table III. Examples of Coded Design Elements from Participants Code Definition Examples Business Procurement and production costs, How many laborers will be involved in the project; target market segments, external find a way to expand outside North America; look at stakeholders, and training for testing and competitors; find a knowledgeable team. manufacturing Customer Target users’ experience and needs
a combination ofengineering, science, computer science, information systems, project management,telecommunications, electronics, and quality assurance topics. Every degree program requires acourse in Integrated Technology Assessment, which is equivalent to a “CAPSTONE” course.Where necessary, students are provided access to a “Virtual Laboratory” for gaining laboratoryexperience.Anwar et.al.3 provided an overview of the engineering technology programs at EC, in a paperpresented at the 2005 ASEE Annual Conference and Exposition. Anwar4 presents details of theBEET program at EC in an article to be published in the Journal of Pennsylvania Academy ofScience.2.2 Characteristics of EC Students As stated in Section 1.0, Excelsior College
articles, and 81 conference papers. He has mentored 67 high school students, 38 high school teachers, 10 undergraduate summer interns, and seven undergraduate capstone-design teams. In addition, he has supervised three M.S. projects, two M.S. thesis, and three Ph.D. dissertations.Hong Wong, Polytechnic University HONG WONG was born in Hong Kong, China. In June of 2000 and 2002, he received the B.S. and M.S. degrees, respectively, in Mechanical Engineering from Polytechnic University, Brooklyn, NY. He is a member of Pi Tau Sigma and Tau Beta Pi. He worked for the Air Force Research Laboratories in Dayton, OH, during the summers of 2000 and 2001. He is currently a doctoral student at Polytechnic
13.1.1© American Society for Engineering Education, 2008 “…A Good Imagination and a Pile of Junk”AbstractThe engineering workplace is placing more emphasis on teamwork in interdisciplinaryenvironments, out-of-the-box thinking, creative engineering, and brainstorming. These skills aretaught to varying degrees in standard engineering curriculums, and often the most fruitfulopportunities exist for students to learn in venues outside of the classroom.This paper will show how building Rube Goldberg machines is a fantastic way for learners fromvarious disciplines to get hands-on project experience in a team environment. Intensebrainstorming and work sessions result in inventive and unique machines that are fascinating forboth
to outreach activities,we also use these real-time DSP tools in several of our regular ECE courses.In the capstone design course ECE 468, “Computers in Control and Instrumentation,” winDSK6is used as an example of an appropriate student project outcome. The student projects must uti-lize the DSK6713 which includes the HPI daughtercard. The winDSK6 program is also used todemonstrate some of the DSP software that the students need to write for their projects. The audioeffects, FIR and IIR filter routines, and the scope/spectrum analyzer are used as a reference for thefunctionality of the project code. The audible effects of aliasing and quantization noise are alsodemonstrated in class using winDSK6.In ECE 330, the first signals and systems