donorcompany.Special emphasis should be given to the importance of the maker space in the development of theEngineering and Computer Science program at Skyline College. The program now has eightEngineering and eight Computer Science courses, most of which are taught in or have projectsconnected to the maker space. The adjunct faculty that started the program is now tenure tracklead of the program. The program faculty consists of one full-time residential faculty member,one adjunct instructor in Engineering, two adjunct instructors in Computer Science, and a full-time laboratory technician who manages the maker space and supports physical scienceinstruction including Engineering, Physics, and Computer Science.South Mountain Community CollegeSouth Mountain
minimum, core essentials in order to allow time for depth of exploration and engagement in labs and projects. As a result of trying to cover too many topics, in- class demonstrations and labs were only offered periodically due to time constraints, even though they were found to be extremely worthwhile. ● There is disparity among personnel regarding preparedness to teach an integrated lab course as well as the depth of content required. Faculty buy-in of laboratory-style teaching is a must. The recommendations for future iterations of this and subsequent courses in this series involve setting the stage for a laboratory-style course both through the design of
Wilcox, Oak Ridge Historian, in which he discusses GeneralGroves who led the Manhattan Project in WWII. Students are shown original telegrams describingthe Hiroshima and Nagasaki missions in August 1945.In collaboration with the institutional library’s Unique Resources Staff, relevant archival recordsand manuscripts materials are displayed throughout the semester. Sections of these manuscriptsthat mention physics concepts and equations studied by previous students during the past twocenturies are highlighted for the current students to read.The course assesses student technical knowledge with two mid-term exams. There is onecomprehensive final exam. There is a 10-session laboratory program. Required problems are thesame for all students. Each
about GradStudent STEM Share, 60% of teacher responses included some mention of the researcherssharing about their educational backgrounds and the importance of school. For example, oneteacher wrote, “[They shared] how education revolutionizes our abilities and future.” Twoteachers also specifically mentioned that the classroom visits expanded students’ understandingof science by noting, “Knowing there is science everywhere! Even outside the laboratory,” and,“They showed my students how scientific concepts are applied in the world outside theclassroom.” The teachers replied with similar responses to the question, “How did Grad StudentSTEM Share impact your students?” One teacher noted, “Not only did they inform the studentsabout their research
Paper ID #15982Assessing the Efficacy of K-12 Engineering Outreach ”Pick Up and Go” KitsDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical
Paper ID #15724Assessment of STEM e-Learning in an Immersive Virtual Reality (VR) Envi-ronmentDr. Hazim A El-Mounayri, Indiana University Purdue University, Indianapolis Dr. El-Mounayri received his PhD in 1997 from McMaster University (in Canada) in Mechanical En- gineering, He is currently an associate professor of Mechanical Engineering, the co-director of the Ad- vanced Engineering and Manufacturing Laboratory (AEML) at IUPUI, and a senior scientist for manu- facturing applications at Advanced Science and Automation Corp. Also, he is a leading member of INDI (Integrated Nanosystems Development Institute). He co-developed
pertaining to engineeringstructures; (6) to see (in person) modern engineering marvels.The principles of structural engineering and calculations of efficiency and safety were presentedthrough the use of structural case studies. Homework assignments, laboratories, and hands-ondesign projects were designed to emphasize structural analysis for columns, towers, buildings,trusses, and arch structures. This course included field trips to relevant local landmarks,documentaries, structural analysis using computer modeling software, and hands-on learning bybuilding and testing domes and a model bridge. In addition to technical calculations, this courseemphasized the importance of effective communication in the field of engineering throughstudent
addition of a card ortwo. Consequently, engineering faculties are constantly faced with the dilemma of establishing abalance between virtual and real labs to address cost problems while graduating sophisticatedengineers with enough practice. One advantage of virtual experimentation and computersimulation is that engineers are better equipped to understand and use mathematical expressionsas well as graphics effectively. The advantages of using engineering simulation-based training also include reducing thegap between the learning environment and the "real" environment, and making available training“real world” situations that are difficult to simulate in a hands-on lab. Traditionally for teachingtechnology-based courses, laboratory
laboratory. Several weeks before school begins in the fall, Page 26.606.4each department receives a list of the mentees receiving the award, and a synopsis of the areas ofresearch that she is interested in. The departments can then match students with faculty mentors, aligning as best as possible the student’s interests with faculty expertise and availability. Theengineering departments are responsible for contacting the students, informing them of theirmentoring professor, getting them hired as research assistants, and making sure they are trainedin department policies and safety procedures.The
education has been discussed8); (c) Developing a respective multi-disciplinary laboratory for both research and teaching of hardware/software security; and (d) Advancing education through inter- and intra-university research collaborations (it is noted that the authors of this work are from different and diverse backgrounds).We note that a cryptographic system was chosen for deeply-embedded security integration ofresearch and teaching for a number of reasons: (a) efficient and practical use of cryptographywill be one of the major schemes in providing security in future deeply-embedded systems and(b) the cryptographic architectures are modular thus dividing the tasks in performing research orinstructing in multiple independent
presented during the were delivered last couple of days of the workshopHands-on evaluation Designed to measure the Completed by the instructional performance the performance team by the end of the first of the participants on the week of the training when hands-on laboratory exercises participants completed assigned hands-on exercisesReadiness survey Designed to capture each Completed by the end of the participant’s perception of the training
Topics and AssignmentsThe author provides substantive examples on how humor can be incorporated intospecific engineering and/or technology topics and assignments. For example, humor canbe used with class topics and assignments involving: (1) planning and scheduling, (2) justin time (JIT), (3) plant layout, (4) methods and motion studies, (5) statistical techniques,(6) measuring performance, (7) continuous improvement, (8) laboratory work, (9) Page 26.1667.14multidisciplinary learning, and (10) flowchart diagraming.(1) Topic: Planning and SchedulingAfter providing students with a newspaper article on the poor performance of a givencompany, the author
STEM activities throughout years for local high school and middle school students, outreach efforts with local high schools, and other com- munity involvements for many years through enrichment workshops and summer opportunities for the local community.Mr. Gerardo Javier Pinzon PE, Texas A&M International University Mr. Pinzon is the STEM Advisor & Laboratory Manager in the Engineering, Mathematics and Physics Department at Texas A&M International University (TAMIU). He is currently a PhD Candidate (ABD) in Environmental Engineering at Texas A&M University at Kingsville (TAMUK). He holds a Masters of Environmental Engineering from TAMUK, a Masters of Business Administration from TAMIU and a
bioengineering curriculum design and student learning outcomes. Page 26.283.1 c American Society for Engineering Education, 2015 Bioengineering Global Health: Design and Implementation of a Summer Day Camp for High School StudentsAbstractSummer camps present opportunities for students to expand their knowledge of science andengineering principles and applications, acquire hands-on experience in laboratory techniques,and increase interest in pursuing college degrees and careers in
disciplines in Spanish, focuseson integrating physics and calculus for first-year engineering students13. The Fis-Mat coursemeets three times a week for a total of 5 blocks of 80 minutes each in three sessions (one blockon Monday and two consecutive blocks on Wednesday and Friday). In terms of teaching load,two blocks correspond to the Physics course, two blocks to the Mathematics course and oneblock corresponds to the Physics Laboratory. Both professors were present and participating atall times. During the actual sessions there was no distinction between the blocks, each professorled the class depending on students’ needs. The course program was structured in a coherent andarticulated way without paying much attention on whose block corresponded
course. In essence, all of their prior program baggage went into the classroom every day;they could not hit the “reset” button as students typically do every semester as they encounterdifferent instructors. We became convinced through student testimonials that they needed to feellike, and be “regular” engineering students. Yes, they were admitted through a special programbecause of their potential, but once in the engineering college, students just wanted to be“normal.”To boost both students’ learning and their beliefs that they belong in engineering, in fall 2013 weconverted the traditional preparatory physics course to a hands-on format, implementing weeklyengineering-focused laboratories that focused on data collection, analysis and synthesis
tools and application and having also total quality management diploma and being quality master holder dealing with all quality systems as documentation , CAPA management , RCA , facility maintenance and also ISO 9000/2008 expert in addition to being certified from Bernard Castle in UK as sterile area facility Design expert as per ISO regulations . Egyptian pharmacist graduate of 2007 who started my career as a research and development pharmacist in SEDICO pharmaceuticals in EGYPT for about 2 years dealing with new dosage forms formulation and then rotated to Methodology and stability department in which i dealt with dosage form analysis and innovation of new methods of analysis dealing with all laboratory
Writing Program Administration in STEM. c American Society for Engineering Education, 2016 Extending WID to train mechanical engineering GTAs to evaluate student writingAbstractBeyond first-year composition, the undergraduate mechanical engineering curriculum providesfew opportunities for students to develop technical writing skills. One underutilized path forstudents to strengthen those skills is the required sequence of laboratory courses, where studentswrite reports that are evaluated by graduate teaching assistants (GTAs), many of whom speakEnglish as a second language. Historically, engineering GTAs have not been trained informative assessment techniques to help
new to engineering instruction. Feisel and Rosa10 give anextensive review of the historical role of instructional engineering laboratories. Howeverlaboratory or hands-on learning specifically for Statics instruction is a relatively modern conceptdeveloped in recent decades. Numerous authors have described hands-on instructional activitiesinvolving pulley systems, levers, cables, trusses, ladders and friction forces to demonstrate andteach basic principles of Statics.11,12,13,14,15,16,17,18,19 The focus of their work is in improving theconceptual understanding of the student and helping the student relate theory to the physical.Some of the exercises also incorporate creativity and design.14,18 There is not, however, a directeffort by these
otherexisting facilities, CET faculty are mentoring Junior or Senior-level Engineering students duringthe regular semester and also during the summer. Another aspect of the research/project workusing laboratory equipment is to involve the freshmen Engineering students with their seniorcounterpart in some of the experiments and/or demo to excite them about the field and toreinforce their theoretical knowledge through these hands-on experiments. These paid researchopportunities are helping our students from the poor community in reducing their regular workhours from low-paid non-technical jobs, and also in honing their professional skills.Through the support of the grant project, the CET faculty was also able to create several paid (aone-time stipend
of Illinois at Urbana- Champaign and has been a full-time faculty member in the Electrical and Computer Engineering De- partment at Valparaiso University since August of 2001. He teaches courses in senior design, computer architecture, digital signal processing, freshman topics, and circuits laboratories and is heavily involved in working with students in undergraduate research. Will is also a 2013 recipient of the Illinois-Indiana ASEE Section Outstanding Teacher Award. Upon coming to Valparaiso University, Will established the Scientific Visualization Laboratory (SVL), a facility dedicated to the use of Virtual Reality (VR) for un- dergraduate education. Working exclusively with undergraduate students, Will
Chicago’s (UIC) College of Engineering in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Department of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, mobile health, man- ufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $40 million in research grants and contracts on issues of importance such as computer-enhanced transportation systems, man- ufacturing, design optimization and bioinformatics. These projects have
involve individual students working in faculty research laboratories with one-on-onementoring, typically spanning one or more semesters, although the activities and mentoringstyles may vary. Due to limited capacity, UREs are often competitive and have selection criteriasuch as grades, test scores, and previous experience or performance based in a class [19].In contrast, CUREs have a structured curriculum and are open to a broader range of students,placing higher demands on mentors to guide multiple students [18]. Duration is a critical factorin both UREs and CUREs, influencing outcomes significantly [18]. UREs and CUREs differ inselectivity, duration, setting, mentoring approaches, and associated costs. Notably, Burt andcolleagues [19] delve into
. PhD. Civil Engineering, Kansas State University, Manhattan, KS , May 2008. Dr. Palomo is currently a Professor in the Civil Engineering Department at California State Polytechnic University, Pomona (Cal Poly Pomona). In this position, Dr. Palomo is responsible for teaching courses such as Introduction to Civil Engineering; Hydraulics; Water and Wastewater Treatment; Groundwater Mechanics; Research Experience of Undergraduate Students; and Engineering Outreach Service Learning courses, among others. She is also a faculty advisor for the California Water Environment Association (CWEA), and Engineers Without Boarders (EWB) student chapters. Additionally, Dr. Palomo is the CE Water Analysis laboratory director and
, Georgia Institute of Technology Yiming Guo is pursuing a Master of Science degree in Electrical Engineering at the Georgia Institute of Technology. He received his Bachelor of Science degree at University of California, Los Angeles. His primary interests involve machine learning and circuit design.Dr. Ying Zhang, Georgia Institute of Technology Dr. Ying Zhang is a Professor and Senior Associate Chair in the School of Electrical and Computer Engineering at Georgia Tech. She is the director of the Sensors and Intelligent Systems Laboratory at Georgia Tech. Her research interests are centered on systems-level interdisciplinary problems across multiple engineering disciplines, with AI-enabled personalized engineering
and Space Studies (TCESS), a NASA University Research Center, and Director of the UPRM Laboratory for Applied Remote Sensing and Image Processing (LARSIP). Dr. Velez-Reyes is a strong advocate on promoting access to excellent higher education to all students particularly those from socioeconomically disadvantage backgrounds and underrepresented populations. He is a board member of the Inclusive Engineering Consortium and is actively engaged in initiatives that promote diversity equity and inclusion in engineering education. He has held faculty research-internship positions with Air Force Research Laboratories, and NASA Goddard Space Flight Center. Furthermore, he is a member of the Eta Kappa Nu, Sigma Xi, Tau Beta
IEEE, she is a member of the IEEE Standards Association and is in the Standards Development Working Groups of several standards related to online laboratories, learning environments, and privacy, security and governance of data related to learning systems. In ASEE she serves in the ASEE International Activities Committee and is Secretary/Treasurer of the ASEE International Division. She is an internationally registered Professional Engineering Educator (iPEER), ranked at level 5: Engineering Education Researcher, out of 6 levels. According to Google Scholar, her h-index is 25, i10-index is 59, and she has over 1900 citations.Jusmeidy ZambranoLaura Eugenia Eugenia Romero Robles, Tecnologico de MOnterrey
States.Undergraduate students in the department of electrical and computer engineering and thedepartment of computer science at this institution are expected to complete these courses in their3rd year of study. In terms of structure, the course had 12 weekly online assignments and 3examinations. The course also had a laboratory component with students completing 8laboratories during the semester.This course was designed by the instructor for a face-to-face delivery with initial syllabi andstudent learning objectives provided by the department (the course was not a new course to theinstitution prior to delivery by this instructor). Details regarding the design and differencesbetween styles of delivery as the courses evolved from face-to-face to asynchronous to
project demonstrates mastery ofmaterial through the appropriate use of statistical methods and interpreting their results. Beyondthis, the students must further communicate these findings clearly to a diverse audience (who havetheir own, and often very different, projects).Project selection involves the students choosing a topic; these are available first-come, first-served;however, the courses assume that the students will develop their own topics (with instructorsupervision, not direction) and the students are not provided with a list of ideas. Students areencouraged to look to laboratory experiments in literature, or even science fair project ideas 1.Given the possibility that many concepts are not practical, the students are expected to
Si and GaAs electronic devices and semiconductor lasers at the research laboratories of GEC and ITT and published numerous articles in this field. He was a professor of Electrical and Computer Engineering at Dominion University. He has advised 14 PhD and 20 MS students. He received numerous awards: Doctoral Mentor Award 2010; Excellence in Teaching Award 2009; Most Inspiring Faculty Award 2008; Excellence in Research Award 2004; and Certificate of Recognition for Research - NASA, 1994. He is a Senior Member of the IEEE and a Member of the Electrochemical Society.Mr. Sunday Adeyinka Ajala, Norfolk State University Ajala Sunday received the Bachelor of Science degree in Electrical and Electronics Engineering from