response to self-reported vulnerabilities and concerns of engineeringstudents. This paper presents data from practical efforts to identify and mitigate anxiety amongengineering students. A group of twenty-seven engineering and engineering technology studentswho were part of a scholarship program was asked to submit journal entries in which theyreflected on their fears and anxieties related to their participation in their degree program.Prominent themes which emerged from student reflection included time management and itseffects on academics and social activities, the likelihood of degree completion and success inengineering-specific coursework (e.g. senior capstone projects), and aspects of life followinggraduation such as handling accumulated
management, from the University of Missouri-Rolla. As the author or coauthor of over 100 technical papers, his research interests include supply chain management, humanitarian and healthcare logistics, healthcare/medical in- formatics, and data standards. He has directed several projects funded by the National Science Foundation, Air Force Research Lab, and Wal-Mart Stores.Prof. Corey Kiassat, Quinnipiac University Dr. Corey Kiassat is an Assistant Professor of Industrial Engineering at Quinnipiac University and has a BASc and a PhD degree in Industrial Engineering from the University of Toronto. He has an MBA, majoring in Marketing and International Business, from York University. Corey is a Professional Engineer and
, University of Delaware Dr. Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional development, implementa- tion of computational tools across the chemical engineering curriculum, and game-based learning.Dr. Julia A Maresca, University of Delaware Microbiologist in Civil and Environmental
promote DEI. In addition, he also works on many research-to-practice projects to enhance educational technology usage in engineering classrooms and educational research.Li Shen, University of Pennsylvania Dr. Shen obtained his Ph.D. degree in Computer Science from Dartmouth College. He is a Professor of Informatics and Radiology in the University of Pennsylvania. His research interests include medical image computing, biomedical informatics, machine learning, trustworthy AI, NLP/LLMs, network science, imaging genomics, multi-omics and systems biology, Alzheimer’s disease, and big data science in biomedicine. ©American Society for Engineering Education, 2024Theorizing neuro-induced relationships
capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and success in retention of undergraduate students in engineering
, Computer Graphics, Materials Science and laboratory courses. Since 2015 she has been actively involved in the University of Miami College of Engineering’s ”Redefining Engineering Education” strategic plan on educational innovation. As part of this plan, Dr. Basalo worked with 2 other faculty members to organize inaugural Senior Design Expo in May 2017, an exposition where over 200 senior students showcased their Capstone projects to the University of Miami community, alumni and industry leaders. Starting in 2016 and through her work with the University of Miami’s Engaged Faculty Fellowship program, Dr. Basalo incorporated an academic service component into the final project for a sophomore-level Measurements Lab course
, she introduced the first experiential activity for Applied Mechanics courses. She is coordinator and advisor for capstone projects for Engineering Technology.Mr. Carlos Michael Ruiz, Drexel University (Eng. & Eng. Tech.)Mr. Smarth H. ChadhaMr. Shraman Kadapa, Drexel University (Eng. & Eng. Tech.) Shraman Kadapa completed his bachelor’s degree in mechanical engineering from Purdue University, West Lafayette. He is currently pursuing a masters’ degree in mechanical engineering and mechanics at Drexel University. He is a research and teaching assistant in the mechanical and mechatronics lab at Drexel. He is also a researcher in Scalable Autonomous Systems Lab. His research interests are mainly in robotics which
Perspectives for Engineers o Learning theories applied to engineering education. o Curriculum design: Approaches to planning teaching. o Writing and reading as scaffolding for learning and teaching. o Capstone projects in engineering education. • Module 2: Teaching-Learning Methodologies in Engineering. o Problem-based learning and projects. o Collaborative learning and teamwork. o Use of simulations and virtual laboratories. o Integration of emerging technologies in engineering education. • Module 3: Formative Assessment and Feedback o Evaluate versus qualify as foci of learning. o Design of instruments, criteria, and guidelines necessary to accompany
Paper ID #38699Indigenizing the Artificial Intelligence (AI) Programmed EngineeringEducation Curriculum, Challenges and Future PotentialsDr. Bahar Memarian, University at Buffalo, The State University of New York Dr. Bahar Memarian is an interdisciplinary researcher and educator with more than 10 years of research and teaching experience at the intersection of applied and social sciences. She has designed and executed research projects as both a team leader and a member. She has also developed and delivered learning modules and courses in the areas of STEM, design, and engineering education at the secondary and
. (2019, June). Intercultural competency differences between US And central asian students in an engineering across cultures and nations graduate course. In 2019 ASEE Annual Conference & Exposition.11. Sanger, P. A., Ziyatdinova, J., Kropiwnicki, J., & Van Nguyen, P. (2015, June). Changing Attitudes in Cross-Cultural Diversity Through International Senior Capstone Projects. In 2015 ASEE Annual Conference & Exposition (pp. 26-341).12. Ziyatdinova, J., Bezrukov, A., Sanger, P. A., & Osipov, P. (2016, June). Cross Cultural Diversity in Engineering Professionals—Russia, India, America. In 2016 ASEE International Forum.13. Imbrie, P. K., Agarwal, J., & Raju, G. (2020, October). Genetic Algorithm Optimization
, Developing Research Report, and Understanding School Culture. Mr. Beigpourian currently works in the CATME project, which is NSF funding project, on optimizing teamwork skills and assessing the quality of Peer Evaluations.Dr. Matthew W. Ohland, Purdue University-Main Campus, West Lafayette (College of Engineering) Matthew W. Ohland is Professor of Engineering Education at Purdue University. He has degrees from Swarthmore College, Rensselaer Polytechnic Institute, and the University of Florida. His research on the longitudinal study of engineering students, team assignment, peer evaluation, and active and collaborative teaching methods has been supported by the National Science Foundation and the Sloan Foundation and his
Paper ID #31759Combining Strategies for Leadership Development of Engineering StudentsDr. Nayda G. Santiago, University of Puerto Rico, Mayaguez Campus Nayda G. Santiago is professor at the Electrical and Computer Engineering department, University of Puerto Rico, Mayaguez Campus (UPRM) where she teaches the Capstone Course in Computer Engineer- ing. She received an BS in EE from the University of PR, Mayaguez in 1989, a MEng in EE from Cornell University in 1990, and a PhD in EE from Michigan State University in 2003. She leads the Southeast region of the Computing Alliance for Hispanic Serving Institutions (CAHSI). Dr
. Joshua A. Enszer, University of Delaware Dr. Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional development, implementa- tion of computational tools across the chemical engineering curriculum, and game-based learning.Dr. Tia Navelene Barnes, University of Delaware Dr. Tia Barnes is
spatial skillsassessment in their final year. In order to incentivize participation, the assessment was offered asan extra credit assignment in their senior design (capstone) course.In this study, the PSVT:R taken in the first year is referred to as the entrance exam, while thePSVT:R taken in the final year is referred to as the exit exam.ResultsA total of 120 graduating engineering students (74 male, 46 female) from a variety of majors (61Mechanical, 42 Civil, 18 Other) participated in this study. Scores on the entrance exam (M =24.38, SD = 4.01) and exit exam (M = 24.84, SD = 3.89) are compared in Figure 1a. Differencesare not significant, t(119) = -1.248, p = .214, although mean and median test scores in the finalyear were slightly higher than
Retention Program offers tutorial sessions and career services.The mentors perform a comprehensive analysis of each student’s academic records in order to monitorthe pace of progress throughout the program. Upon completing eighty (80) percent of the program, thestudents are advised to meet the Department Head in order to plan for a successful completion of theundergraduate capstone design project in conjunction with a local industry. The students are alsomentored and encouraged to participate in the activities of the professional engineering societies, suchas ASME, IEEE, ASHRAE, SAE, etc.Department of Mechanical and Aerospace Engineering, North Carolina (NC) State University, USAThis is a department much larger than the previous ones discussed here
isneeded.The National Academies of Sciences (NAS) report [10] emphasizes that using a piecemealapproach to data science curriculum development may result in content coverage but also ‘lackeducational and cross discipline cohesion’. While programs need to address data science skills,they should also prepare students for the actual ‘data challenges they will face in their careers’[10]. The NAS report also calls out the need to include high impact educational practices such asfirst year seminars, undergraduate research, common intellectual experiences (common andintegrative core knowledge), writing intensive courses, collaborative projects and assignments,and capstone courses. Important findings to note within the NAS report [10] include enhancingthe
leading to new curriculum projects, internships, research funding for undergraduatesor capstone projects, and government funding for research.5. Creating a pipeline of female engineering academics by increasing awareness and understanding ofthe academic career path. For example, SWE can increase understanding of what an academic career pathentails, resolve misconceptions, and/or conduct an awareness campaign. Examples include conferencesessions and/or webinars targeting a broad engineering audience.
action.Critical reflection is embedded within a program that recruits both engineers and non-engineers,with teaching and learning strategies drawn from the social sciences and humanities andintegrated with engineering management and problem-based learning. The program connectsstudents to a project partner in Sierra Leone or Zambia, the students work to understand theirpartners’ needs and assets and then develop an intervention plan consistent with the aims of theSDGs.In this paper, we provide results of a critically reflexive thematic analysis to explore the nature ofstudent reflections within the context of this interdisciplinary program. Evidence suggests arange of student interpretation of the purpose and application of critical reflection. Some are
evaluating specific characteristics of thementorship experience itself [7]. Other mentorship within engineering programs is designed to support career or industrymentoring, usually for upper-level students. While industry mentors focusing on technical andproject mentorship through capstone projects is sometimes considered mentorship [21,22],mentorship programs with less curricular integration often focus on broader career readiness.Industry mentors are sometimes expected to assist with helping students find internships and jobs[3] or to develop professional skills that aren’t usually taught as a part of the engineeringcurriculum [23]. Evaluation of these programs is often driven by surveys and may explore whichcareer-readiness topics are being
in this article.Dr. Marie Stettler Kleine’s research on humanitarian and integrated engineering programsinspired her reflection on how different forms of contextualization and the vocabulary used todescribe them signal different ways to best teach engineers. Her graduate training in science andtechnology studies and human-centered design prepared her to see that these forms ofcontextualization are much more nuanced than using particular language, but this varyinglanguage fundamentally changes the engineering pedagogy in practice. She continues tointerrogate why and how engineering educators learn from other disciplines to explicitlyprioritize contextualization.For Dr. Kari Zacharias, this project has been an opportunity to reflect on the
project that the students may be involved with in theirfuture careers. Capstone team projects which have become a standard part of (nearly) every en-gineering and computing program have been especially successful in helping to achieve this goal.The second intended goal of such activities is to help students learn the technical, conceptual mate-rial by engaging in suitable activities with their fellow-students rather than just listening passivelyto lectures. At the same time, many engineering and computing faculty have serious concernsabout introducing such activities to any serious extent in their courses; primary among these con-cerns is the potential negative impact of such activities on topic coverage. Trying to arrange suchactivities outside
. workforce: Students who study one year on a U.S. campus can become eligible for joining the U.S. labor market (see 1+1 option in Section 2.4). Figure 1: Degree program overview2.2 Program CurriculumThe course schedule for the M.S. in ECE degree program is shown in Figure 1. There are eightcourses spread over four semesters plus two capstone project courses, which are offered in thesecond and fourth semester. The entire program duration is four semesters, which is approximately16 months, as a full semester is offered during the summer.This program meets the same requirements as the residential M.S. in ECE offered on the UMassAmherst campus. The admission and degree completion requirements are identical, and the
Paper ID #25445Techno-economic Modeling as an Inquiry-based Design Activity in a CoreChemical Engineering CourseDr. Jamie Gomez, University of New Mexico Jamie Gomez, Ph.D., is a Senior Lecturer III in the department of Chemical & Biological Engineering (CBE) at the University of New Mexico. She is a co- principal investigator for the following National Science Foundation (NSF) funded projects: Professional Formation of Engineers: Research Initiation in Engineering Formation (PFE: RIEF) - Using Digital Badging and Design Challenge Modules to Develop Professional Identity; Professional Formation of Engineers
at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per
University of Virginia. He is the principal investigator at University of Virginia on the ’4C Project’ on Cultivating Cultures of Ethical STEM education with col- leagues from Notre Dame, Xavier University and St. Mary’s College. His research focuses on wicked problems that arise at the intersection of society and technology. Rider holds a Ph.D. in Sustainability from Arizona State University, and a Master’s degree in Environmental Management from Harvard Uni- versity and a Bachelor’s degree in Environmental Science from University of New Hampshire. Before earning his doctorate, he has worked for a decade in consulting and emergency response for Triumvirate Environmental Inc.Andrew LiRebecca Jun, University of Virginia
other individuals. For example, engineering work producessignificant and long-lasting impacts on society, and engineers are responsible for understandingthe potential societal implications of their solutions [1]–[4]. As another example, engineers maywork closely with communities and stakeholders as part of their problem definition and solutiondevelopment processes [1], [4]–[6]. Furthermore, communication and collaboration are coreaspects of professional engineering practice. To achieve optimal engineering outcomes,engineers must be able to work effectively with diverse teammates and co-workers [1], [7]–[9].Engineering students engage with the social aspects of engineering work in several contexts,including internships and project-based design
introduce students to local engineers who areinterested in sharing their experience and providing advice to the students. Some mentors specifyveterans, especially if they are veterans themselves. Some will use the event to recruit interns fortheir temporary needs in their organizations.Capstone Leadership. One of the easily observed and experienced aspects of veteran studentswithin the classroom is their performance within these high stress teams both as members andleaders. The Citadel has documented previously the anecdotal impact of the veterans withincapstone teams [10], but last year the faculty began to assess leadership of each team member,especially the assigned leader during each grading period, of the capstone team as part of theleadership
technocentric process in favor of emphasizing itsinherently sociotechnical nature [38]. Forbes et al. [38] have put the ExSJ into practice at theirhome institution, University of San Diego, leveraging eight mechanisms that “support theco-created solving of sociotechnical problems, including community forums, community awards,scholar schemes, professional development events, a pro bono professional network, courses,capstone design projects, and research sponsoring undergraduate engineering” [p. 4]. Inparticular, they highlight their elective course, Community-Based Participatory EngineeringApprenticeship. This course provides space for students and local communities groups tocollaborate with one another “to share knowledge and understanding and to co
collected course descriptions, we removed those that refer to special courses, e.g.,“Research Experience for Undergrads”, “Graduate Research”, “Project Research”, “Capstone”,“Cooperative Education in Computing”, “Special Topics”, “Independent Study”, “VerticallyIntegrated Projects”. If a course has multiple sections, we aggregate them into one, and considerthem as a single offering, since the course description will be the same for all sections. We alsoremoved courses that had less than five students enrolled, as in that case, the percentage of maleversus female would be less meaningful and could have an unintended effect when aggregatingthem with other courses with higher enrollment numbers. In the departments of BME, CEE, CIS,ECE, we have 31, 62
modeling, project based engineering design, and robotics in manufacturing.James R. McCusker, Wentworth Institute of Technology James R. McCusker is an Associate Professor at Wentworth Institute of Technology in the Department of Electrical Engineering. Since joining Wentworth in 2010, he has been heavily involved with an array of interdisciplinary design courses that range from introductory to capstone courses.Prof. Lynette Panarelli, Wentworth Institute of Technology Lynette Panarelli is an Associate Professor of Interior Design at Wentworth Institute of Technology. She teaches across the curriculum with a special interest in technology and healthcare design. Before arriving at Wentworth ten years ago, Lynette