- elling and Simulation, Applied Ergonomics, The International Journal of Production Research, Industrial Management, Simulation, and The Institute of Industrial Engineering Transactions, to name a few. His professional affiliations include ORSA, TIMS, APICS, SME, and IIE. Dr. Houshyar can be reach at houshyar@wmich.edu. c American Society for Engineering Education, 2018 Integrating Ethics in Undergraduate Engineering Economy Courses: An Implementation Case Study and Future DirectionsAbstractThe integration of humanities, social sciences, and writing into the engineering disciplines hasbeen shown to improve critical thinking and creativity in
interdisciplinary approach of teaching and learning, looking to close the gap between how knowledge is created and how students learn. His main research areas are a) models and modeling, b) learning environments and c) problem solving. Page 26.353.1 c American Society for Engineering Education, 2015 Closing the gap between physics and calculus: Use of models in an integrated courseAbstractThis study focuses on bridging the gap between physics and mathematics by teaching anintegrated first-year college course of physics and mathematics using Modeling
Paper ID #36470Resistance to advocacy around hidden curriculum in engineeringDr. Victoria Beth Sellers, University of Florida Dr. Victoria Sellers is a postdoctoral research associate in the Department of Engineering Education at the University of Florida. Her current research is focused on determining how engineering students respond to hidden curriculum. Victoria has previouslDr. R. Jamaal DowneyIdalis Villanueva Alarc´on, University of Florida Dr. Villanueva Alarc´on is an Associate Professor in the Engineering Education Department at the Uni- versity of Florida. Her multiple roles as an engineer, engineering
experiencein the senior year, students in this unique multidisciplinary engineering program experience thehabits of mind and practice of engineering over three years, with their final year being used inleading the design/build solution finding for a live theatrical performance.This work examines a novel instance of engineering capstone design inspired by Wiggins andMcTighe’s backward design instructional approach (Wiggins & McTighe, 2005), informed bythe CAP- Content, Assessment, and Pedagogy framework (Streveler, Smith & Pilotte, 2012), andexecuted as an instance of practice-based education (Mann, Chang, Chandrasekaran, et. al,2021).Utilizing a qualitative case study research design this formative and integrated(engineering/performance arts
integratingthese tools into instruction can foster deeper understanding of complex engineering concepts andproblems5-7. In particular, these types of representations are particularly useful for helpingstudents understand microscopic or abstract phenomena.The Department of Materials Science and Engineering (MatSE) at the University of Illinois atUrbana-Champaign is synthesizing computational tools and skills across the curriculum. Overtwo years, using a collaborative course-development approach, a team of six faculty (one tenuredprofessor and five assistant professors) have integrated training in computational competenciesacross five courses (MSE 201 – Phases and Phase Relations, MSE 206 – Mechanics for MatSE,MSE 304 – Electronic Properties of Materials
integrate into the scientific community at the same rate as non-URM students. When URMs do integrate into the scientific community, such as by formingstudy groups, participating in undergraduate research, and getting involved in clubs ororganizations, their likelihood of completing an engineering degree increases [9], [31]. URMswho leave engineering fields cite a lack of sense of belonging or engineering identity, furtherdemonstrating the importance of becoming integrated into the field [32]–[35].Beyond factors such as these that push URMs away from engineering, research has indicated thatURMs may be pulled towards other careers, particularly by an interest in altruistic and socially-relevant work, which can be difficult to fulfill in a STEM field
University Mary- land. Her primary research is in writing pedagogy and assessment, and she has taught a wide variety of writing courses including first year composition, professional writing, rhetoric, and style. c American Society for Engineering Education, 2019 WIP: Integrating Writing into Engineering Labs: Developing Curriculum and Creating a Writing Fellows Program I. IntroductionThis paper presents a Works-in-Progress. Communication competency is critical for practicingengineers [1]. Research demonstrates that learning to write and communicate in engineering islinked to learning to think like an engineer and to developing a professional identity as an engineer[1], [2]. ABET lists
Paper ID #42470Board 1: Empowering Underrepresented Minority Students in One AviationProgram: Integrating a National Airport Design Competition into the CurriculumDr. Yilin Feng, California State University, Los Angeles Yilin Feng is an assistant professor at California State University, Los Angeles. She received her Ph.D. degree from Purdue University. Her research interest is in airport simulation, operation, and management. ©American Society for Engineering Education, 2024 Empowering Underrepresented Minority Students in One Aviation Program
and faculty.The insights presented in this study offer valuable guidance for educators and industryprofessionals seeking to seamlessly embed data science into the chemical engineering curriculumand better prepare students for a data-centric industry.This paper provides a comprehensive overview of interview development, data distribution, andkey findings. It underscores the urgency of further research to enhance the integration of datascience in the CHE curriculum and the essential role of preparing students for an industry thatincreasingly relies on data analytics and computational techniques.IntroductionThe integration of data science in chemical engineering is a rapidly evolving field, with a focuson data management, statistical and machine
for a process control course in electricalengineering technology. In general, this course provides an overview of process controlprinciples and practices. Topics include analog and digital signal conditioning, temperaturesensors, mechanical sensors, optical sensors, final control, discrete-state process control, andproportional-integral-derivative (PID) controllers. We devote more time to the study of the PIDcontroller in particular because there are so many applications in various industries. For example,power plants need a PID controller to obtain desired control performances. However, teachingmere theoretical concepts to students is often challenging because such concepts require teachingadvanced mathematics that is difficult to
student learning experience. Linking theory and calculations from the lecture to somethingconcrete to which the students are routinely exposed provides relevancy and can successfullyreinforce key aspects of the topic. This paper illustrates the integration of a practical exampleinto a chemical engineering curriculum, with the example pulled from a Mass and EnergyBalances course.The problem involves calculation of the power required to vaporize the liquid in an electroniccigarette (e-cigarette or vaporizer). Solution of this problem requires a coupled mass and energybalance and requires some knowledge of vapor-liquid equilibrium. Obviously, someassumptions are required to analyze this problem. Even with these assumptions, a reasonableestimate of
- Regulated Learning Profiles of Students Taking a Foundational Engineering Course. Journal of Engineering Education, 2015. 104(1): p. 74-100.8. Lawanto, O., et al., Comparing Self-Regulated Learning of Secondary Shool Students and College Freshmen during an Engineering Design Project. Journal of STEM Education, 2013. 14(4).9. Lawanto, O., et al., An Exploratory Study of Self- Regulated Learning Strategies in a Design Project by Students in Grades 9-12. Design & Technology Education, 2013. 18(1): p. 44-57.10. Turns, J.A., et al. Integrating reflection into engineering education. in 121st ASEE Annual Conference & Exposition. http://scholar. google. com. hk/scholar
in-class activities prescribed for the course. Thus it isclassroom pedagogy. The flipped classroom is an important that we investigate the impact that studenteducational concept that is growing in popularity, where motivation has on successful performance in our first-yearthe traditional class-lecture and home-work are inverted flipped programming course as the difference in motivationto home-lecture and class-work. This work focuses on the may explain our previous study results.formation of motivational profiles of studentsparticipating in the flipped classroom environment. LITERATURE REVIEWBased on the theory of intrinsic motivation, we used a I
Electrical and Computer Engineering Dept. Founding Director Microelectronics/VLSI Technology University of Massachusetts Lowell1. Introduction We are already in the age of information technology revolution. Thisnot only incorporates traditional engineering but all aspects of power ofInternet also, culminating into a variety of state-of-art technologies. It is thesublime duty of engineering educators to integrate these technologies intotheir curriculum as a prime requirement. The class room instructions mustprepare the students not only to meet the challenges of the revolution butmust enable them to cope with the challenges presented because of perpetualenhancements in technologies. Presentation of
developed new methods for imaging and tracking mitochondria from living zebrafish neurons. In her work for the EERC and Pitt-CIRTL, April Dukes collaborates on educational research projects and facilitates professional development (PD) on instructional and mentoring best practices for current and future STEM faculty. As an adjunct instructor in the Department of Neuroscience at the Univer- sity of Pittsburgh since 2009 and an instructor for CIRTL Network and Pitt-CIRTL local programming since 2016, April is experienced in both synchronous and asynchronous online and in-person teaching environments.Dr. Kurt E Beschorner, University of Pittsburgh Dr. Kurt Beschorner is an Associate Professor of Bioengineering at
Paper ID #29896Dance-A-Bit: Integrating Dance with Teaching Algorithmic ThinkingMs. Litany H Lineberry, Mississippi State University Lineberry is currently a Ph.D. student in Engineering with a concentration in Engineering Education at MSU with a research focus in cybersecurity education. She received her MS in CS with a concentration in Information Assurance from North Carolina A&T University. Her BS in CS was received from Voorhees College. Previously, Lineberry was Area Coordinator and an Instructor in CS at Voorhees.Dr. Sarah B. Lee, Mississippi State University Sarah Lee joined the faculty at Mississippi State
help us make sense of information. Schemas areuseful because they enable us to make quick, automatic judgements about things.Unfortunately, we often overlook things that don’t fit our schemas. That’sunconscious bias. 10You’re probably already aware that society is biased about gender and technology.The picture is from the Barbie book “I can be a Computer Engineer,” which was partof a series intended to expose girls a variety of careers.In this book, Barbie first downplays her role in her school computer project, thenmesses up her sister’s computer, then has to take the computer to the boys to get itfixed.S. Marenco, I can be an Actress/ I can be a Computer
expected to be well above averageat 27% from 2012-2022 as projected by the Bureau of Labor Statistics.11 As a result, BMEprograms are also growing with the demand. Our BME undergraduate program at the Universityof Wisconsin-Madison, which has historically encompassed sophomores and above, has morethan doubled in the last five years. This year, our college has moved to a direct departmentadmission model adding an additional surge of freshman directly to the program (78% morestudents) with progression requirements versus a secondary application.In an effort to create an inclusive and welcoming environment for these 240 freshman, we havedeveloped a mentorship program integrated with our design curriculum. The undergraduateprogram here was founded
appointment in the Department of Mechanical Engineering at Clemson University. Her research interests include student persistence and pathways in engineering, gender equity, diversity, and academic policy. Dr. Orr is a recipient of the NSF CAREER Award for her research entitled, ”Empowering Students to be Adaptive Decision-Makers.”Maya Rucks, Clemson University Maya Rucks is an engineering education doctoral student at Clemson University. She received her bache- lor’s degree in mathematics from the University of Louisiana at Monroe and her master’s degree in indus- trial engineering from Louisiana Tech University. Her areas of interest include, minorities in engineering, K-12 engineering, and engineering curriculum
. c American Society for Engineering Education, 2018 Work in Progress: Sustainable Engineering Education in Mechanical Engineering Curriculum Dr. Huihui Qi, Grand Valley State UniversityIntroductionSustainable development is a global goal nowadays. Engineers play an unreplaceable role in theglobal sustainable development. As a result, the importance of sustainable engineering educationhas been widely recognized by engineering educators. In addition, ABET [1] has two studentsoutcome criteria for sustainability: students should have (c) an ability to design a system,component or process to meet desired needs within realistic constraints such as economic,environmental, social, political, ethical
transferring new technologies to Panasonic product divisions in Japan. He was also responsible for managing his groups’ patent portfolio. From 2002 to 2004, he was a man- ager at the system group of Panasonic’s sales company in Secaucus, NJ providing system integration and software development for clients. He was also an Export Control officer. Dr. Kanai joined the Design Lab at RPI in 2004. He is currently the Associate Director of the lab and and Professor of Practice of in the Electrical, Computer, and Systems Engineering department. The Design Lab provides industry spon- sored and service oriented multidisciplinary design projects to 200 students/semester. His responsibilities include managing the operation of the
as “engineering” by faculty and students, leading toan engineering workforce poorly trained in dealing with the social dimensions of sustainableengineering solutions. This important concept currently receives little attention within thestandard engineering curricula, particularly within the engineering sciences.The pilot-study research presented in this article uses a mixed-methods approach to assess thestate of social justice awareness of students as they enter an “Introduction to Feedback ControlSystems” (IFCS) class. Social justice interventions are integrated to support students as theylearn about the inherent, yet often invisible, connections between social justice and controlsystems engineering. Instruments, such as surveys and focus
to lead outside the formal curriculum AbstractLeadership has historically been part of professional engineers’ work life, but until recently itwas not integrated into the formal engineering curriculum. With the support of the NationalAcademy of Engineering and Engineers Canada along with regulatory pressures from theAccreditation Board for Engineering and Technology and the Canadian EngineeringAccreditation Board, committed engineering educators with ties to industry have begun to takeup this curricular challenge in greater numbers. Unfortunately, many of these programs touchonly a small segment of the student body because they remain on the periphery of engineeringfaculties. As a result, we know little about the
moral character and ethical integrity. This professionalrequirement also calls on the engineering educators to develop the engineering curriculumenriched with ethics and professionalism.An engineering undergraduate can passively learn professionalism and ethics through seniorcapstone design, summer internships and undergraduate research. However, these opportunitieshave limitations. Hence, as the instructors in an engineering program, the authors felt more onthe formal teaching and practice on ethics and professional conduct needed to raise theawareness in accordance with ABET Student Outcomes-f and i, and the professional bodyexpectations. Environmental engineering curriculum in the authors’ institution introduces ethicsand professionalism to
, economy, and environment and graduate with thefoundation and technical skills supported by systems thinking, multidisciplinary training, andpractical engineering application to confront the challenges found in modern engineering practice[8].Based on data from our previous work with on measuring literacy in sustainable engineering andthe development and results of one teaching module, we proposed the creation of a course at theundergraduate level designed to help students develop sustainable thinking in engineering [9]. Thekey feature of introducing this course early in the curriculum is to ensure that the students aretrained in integration sustainability in their thinking which will help integrate sustainableengineering into whichever discipline
engineering,humanities, and entrepreneurship and innovation at Worcester Polytechnic Institute(WPI), a technology-focused university in Worcester, Massachusetts. The university isbest known for its 47 year-old project-based curriculum. WPI’s 14-week semesters aredivided into two seven-week “terms.” Our sequence involves a three-credit course in thefirst term (for which students receive Humanities and Arts credit) followed by another 3-credit course in the second term (for which they receive Engineering credit). The twocourses are an integrated six-credit hour sequence.“Humanitarian Engineering Past and Present” provides a deep, integrative learningexperience of benefit to both STEM and non-STEM students, and it is our hope that itwill be taught in
) Meeting with Industry Focus-Group, (2) Survey potentialstudents and industry sponsors, (3) and feedback from current programs’ Industry AdvisoryBoards, (4) database research on potential job markets, and (5) Industry Letters of Support.The objective of the meeting with an industry focus-group was to determine the skills required forfuture technical managers and identify the skill-gaps in the current workforce; this informationserved as the basis to design the program-level learning objectives (PLO) and curriculum of theproposed METM program. In addition, a large survey was conducted presenting the proposedcurriculum to the potential students and potential sponsors with the objectives of validating thecurriculum and PLO’s. Furthermore, job market
Paper ID #24767Improving Inclusivity and Diversity in College STEM Programs through Metacog-nitive Classroom PracticesDr. Elizabeth Hane, Rochester Institute of Technology Dr. Elizabeth Hane is a forest ecologist, and an associate professor in the Gosnell School of Life Science at the Rochester Institute of Technology. She also serves as the Faculty Associate to the Provost for General Education, and advises RIT’s provost on issues surrounding general education curriculum and delivery. Her research focus has recently shifted from ecology to developing methods that support the retention of underrepresented students in
sanitation, as well as sustainability solutions, through interdisciplinary approaches. Since joining the Olin College faculty she has also dived into the field of engineering education with an emphasis on integration of arts, humanities, and STEM. Her love of learning was first fostered by an unusual elementary school education that was deeply inter- disciplinary with a substantial arts curriculum. After graduating from Harvard University with a B.A. in Dramatic Literature, she worked professionally in theater and wrote and recorded two musical albums. She then returned to school to study engineering, earning a B.S. in Civil Engineering from Rutgers Uni- versity in 2011. While completing her degree at Rutgers, she wrote
hop-inspired pedagogics and its intersection with design thinking, computational media- making, and integrative curriculum design.Sabrina Grossman, Georgia Institute of Technology I am currently a Program Director in Science Education at Georgia Tech’s Center for Education Integrat- ing Science, Mathematics, and Computing (CEISMC), which is a K-12 STEM outreach center for the university. I am working on several exciting projects inc ©American Society for Engineering Education, 2023 Music, Coding, and Equity: An exploration of student and teacher experiences in decoding messaging and discussing equity with the Your Voice is Power curriculum