major obstacle to doctoral study for fblly employed post-Masters students in the US is the residency and candidacy requirements. The residency requirement provides the doctoral student with intensive study leading to candidacy examinations. The rationale varies from college to college, but has its reasoning based in the necessity for departmental academic interests to be understood and also as a preparation for the research project that the student selects. The candidacy examination gatekeeps the quality of preparation and facilitates the construction of a committee that will direct and monitor the project Page
principals, we employ the following assessment tools:Time Survey. This simple but effective tool documents the time spent by students in out-of-class preparation foreach lesson. It is administered at the start of every class attendance, in every course taught by the Department ofCivil and Mechanical Engineering. For the individual instructor, the time survey provides feedback on how muchtime students are spending on class preparation, homework, projects, and examinations. For the programdirector, the survey provides a reasonably accurate assessment of the relative academic rigor of the courseswhich constitute the program. More important, time survey data for successive offerings of the same courseclearly indicate an increase or decrease in academic
Alabama (UA). The course fills agap in the set of analysis tools that students are given in their formal education.1. BACKGROUNDThis class in life-cycle engineering (LCE) is an outgrowth of the recent expansions andimprovements in design education. One of these expansions, the use of industrial projects, is acornerstone of the class. The course is naturally based upon the major principles of life-cycleengineering.1.1 Design EducationFor quite some time, there has been a push to improve the content and applicability ofengineering design education. Spurred by changes in ABET certification criteria and anexplosion in design theory and methodology research, some universities revamped capstoneengineering design classes. Many mechanical engineering
. Theadvantage of podcasts is that students can view the tutorials while their computers are runningthe oscilloscope program, enabling real-time instructional support as they work on their labswhile on or off campus. The podcasts are a mixture of still images and screen shots imported intoa Powerpoint presentation with an audio track added. Currently, tutorials are compatible withthree platforms: iPod nano, iPod Classic, and the iPod Touch. An explanation of the techniquesapplied during the development of the tutorials and a brief review of the current tutorials areprovided.IntroductionA project known as Lab-in-a-Box (LiaB) was developed at Virginia Tech as one of the outcomesof a department-level reform of the Electrical and Computer Engineering (ECE
to teach specific relevant math and sciencecontent standards and objectives, and receive formative feedback and content knowledgecoaching as they implement, evaluate and refine those lessons.Project TESAL (Teachers Engaged in Science And Literacy) is a three-year professionaldevelopment program that includes annual two-week summer face-to-face intensive professionaldevelopment opportunities and four additional day-long experiences throughout the school year.In addition, project personnel observe participants’ classroom instruction, providing feedbackand support on implementation of Engineering Design-focused lessons. In this paper, wedescribe the program and evaluation findings from the first two years of implementation.Project TESAL
involves the numer-ical simulation of ballistic impact events. Mr. Ziadat is expected to receive his Master’s degree in May2017, after which he will be working as a Structural Analyst within Blue Origin’s Propulsion Analysisgroup, located in Kent, WA. c American Society for Engineering Education, 2017 Incorporating Basic Systems Thinking and Systems Engineering Concepts in a Mechanical Engineering Sophomore Design CourseAbstractMechanical engineering undergraduate programs in the US commonly have in their curricula oneor more courses and a capstone design project in which students can learn and put into practicesome of the methodologies and tools typically used during the design and development of newproducts
Paper ID #18351Jigsaws & Parleys: Strategies for engaging sophomore level students as alearning communityDr. Jamie Gomez R, University of New Mexico Jamie Gomez, Ph.D., is a Lecturer Title III in the department of Chemical & Biological Engineering (CBE) at the University of New Mexico. She is a co- Principal Investigator for the National Science Foundation (NSF) funded Professional Formation of Engineers: Research Initiation in Engineering For- mation (PFE: RIEF) for the project- Using Digital Badging and Design Challenge Modules to Develop Professional Identity. She is a member of the department’s ABET and
Electrical and Computer Engi- neering at California State University, Chico since 2015, teaching Digital Logic Design, Linear Circuits, Electromagnetics, and High Frequency Design Techniques. c American Society for Engineering Education, 2019 Integrating Theory and Hands-On Experimentation in RF Distributed-Element Filter DesignAbstractWhen a graduate-level course in high-frequency circuit design was taught in previous semestersat California State University (CSU), Chico, there were no laboratory sessions or projects thatallowed students the opportunity to design physical circuit prototypes or gain experience withinstruments and measurement techniques in the radio-frequency (RF
. Studentsurveys conducted at two different institutions show why students select to become engineers andtheir preference for the different course components.Introduction “Introduction to Engineering” is a core course given to freshmen students of all engineeringdisciplines. The course aims to familiarize students with the engineering profession, the differentengineering disciplines, the design process for exploratory projects, the work in interdisciplinaryteams, the ethics and professional behavior, the lifelong learning, the written and oral presentationof technical concepts, and problem solving. As curriculum often changes, an online research wasconducted on the most current catalogs (2018-2019) of 182 higher education institutions offeringdegrees in
involved in develop- ing and facilitating the first-year engineering program at ONU. He earned his PhD from the University of Colorado Boulder where his research focused on pre-engineering education and project-based learning.Mr. Bruce Wellman, Olathe Northwest High School Bruce Wellman is a National Board Certified Teacher (NBCT, Chemistry) who teaches Engineering Chemistry as part of Engineering Academy at Olathe Northwest High School in Olathe, KS and serves as a Co-Principal Investigator on an NSF funded (DR K-12) research project entitled ”Building Informed Designers”. Wellman is a member of ASEE’s Board of Directors’ Committee on P-12 Engineering Educa- tion. Wellman completed his B.S. degree in general science
,and evaluate the effectiveness of a set of vertically integrated online modules that will employ aconvergent science approach along with innovative pedagogies to teach model-based systemsengineering (MBSE) to current and future practitioners. The team will collaborate with industrypartners, faculty at community colleges, and faculty at 4-year colleges to prepare online modulesfor three different audiences: practicing engineers, undergraduates at 4-year institutions, andstudents pursuing 2-year degrees. The project began on January 1, 2020. The team of systemsengineers, manufacturing engineers, instructional designers, computer graphics technologists,and engineering educators, some with expertise in learning assessment, will share the
for educational proposals and projects, and working with faculty to publish educational research. Her research interests primarily involve creativity, innovation, and entrepreneurship education.Megan Huffstickler, Pennsylvania State University, University Park Megan Huffstickler in an Academic Adviser in the Biology Department at Penn State. Her undergraduate work is in Chemistry, and she will be receiving an MS in Educational Psychology from Penn State in May 2018.Joseph C. Tise, The Pennsylvania State University, University Park Joseph Tise is a doctoral candidate in the Educational Psychology program at Penn State University. His research interests include self-regulated learning, measurement, and connecting
Paper ID #23194Engineering Student Perspectives on Research and What It Means to Be aResearcherDr. Lisa Benson, Clemson University Lisa Benson is a Professor of Engineering and Science Education at Clemson University, with a joint appointment in Bioengineering. Her research focuses on the interactions between student motivation and their learning experiences. Her projects involve the study of student perceptions, beliefs and attitudes towards becoming engineers and scientists, and their problem solving processes. Other projects in the Benson group include effects of student-centered active learning, self-regulated learning
), with theknowledge and skills to equip their students to become part of a technologically adept workforceas well as informed designers and users of sustainable products. The objectives are: 1) To enhance teacher quality and proficiency in teaching highschool science, 2) To increase the number and diversity of students who study STEM (science,technology, engineering and math) in high school and college and choose STEM-related careersand 3) To equip participating teachers to share their knowledge and innovative, science-basedcurricula within their districts and with a broader, national community of high school STEMteachers. Our rationale for proposing this project is that there is high demand for a scientificallyliterate workforce
, and fifteen ‘teams’ of two to four students). The experience exposedstudents early in the major to the use of sensors, microprocessors, Arduino software, (remote)data acquisition, and the data processing methods useful for their upper level unit operations andprocess control laboratory courses. Projects included evaluating the economic potential of solarpanels or wind turbines installed on campus buildings, monitoring the temperature changes in arecyclable-material parabolic trough, and developing smart agriculture irrigation systems basedupon soil moisture readings. Voluntary feedback from thirty-seven students at the end of thecourse indicated that more than two-thirds of the respondents ‘Agreed or Strongly Agreed’ toqueries that the
projects give little consideration to the cognitive and behavioralprocesses such as team building, clarifying goals and expectations, planning, communication,consensus building and conflict resolution; which hold the key to successful collaboration.5,6 Arecent review of research on engineering student teams suggests that our understanding of howbest to cultivate collaboration amongst remote teams of students is largely underdeveloped7.Others have noted an opportunity to capitalize on much of the life-long learning that can occurthrough team dynamics and interaction.6Web-based scaffolds that include technologies and team activities help enhance virtual teamcollaboration by providing support for online collaboration. A team scaffold is a stable
Education, 2016 Challenges and opportunities for recruiting students to undergraduate civil engineering programsAbstractSociety needs more civil engineers, with the projected near-term need for civil engineers greaterthan any other engineering discipline. Ailing national infrastructure and projected retirementrates have led to job projections suggesting that the near-term need for civil engineeringgraduates is almost double that of any other engineering discipline. This need, combined withother attractive attributes of civil engineering, should make civil engineering a top engineeringmajor at many undergraduate universities.In spite of the career opportunities readily available to graduating civil engineers, and in
Paper ID #15411Connectivity at RIT - Developing & Delivering an Effective Professional De-velopment Workshop Series for Women Faculty in STEMProf. Elizabeth Dell, Rochester Institute of Technology (COE) Professor Dell is an associate professor in the Manufacturing & Mechanical Engineering Technology department at RIT. She serves as the Faculty Associate to the Provost for Women Faculty and is co-PI for RIT’s NSF ADVANCE project. Her research interests include: characterization of biodegradable plastics and environmental consideration in materials selection for production design, the impact of technology paired
exposure from passive treatment discharges.Aimee Cloutier, Texas Tech University Aimee Cloutier is a Ph.D. student studying Mechanical Engineering at Texas Tech University. She earned her B.S. in Mechanical Engineering from Texas Tech in 2012. Her research interests include biomechan- ics, rehabilitation engineering, prosthetic limb design, and STEM education.Mr. Guo Zheng Yew, Texas Tech University Guo Zheng Yew is currently pursuing his doctorate in civil engineering at Texas Tech University with a focus on finite element analysis and glass mechanics. Prior to his graduate work in the United States, he obtained his Bachelor’s degree from Malaysia and has participated in research projects involving offshore structures
Humanities and Sciencesand Adjunct Professor of Engineering Management, Information, and Systems in the Lyle School of En-gineering. Currall previously worked at the University of California, Davis (UC Davis), where he servedas Senior Advisor to the Chancellor for Strategic Projects and Initiatives and as Professor of Management.As Chancellor’s Senior Advisor, Currall co-chaired campus- wide strategic visioning exercises to positionUC Davis as the ”University of the 21st Century.” He also led planning for an additional campus in theSacramento region, which included the academic strategy, financial plan, fundraising plan, analysis ofphysical facilities, organization of advisory groups, and liaison to the Academic Senate. He has servedas the Vice
design. The goal of Dr. Morkos’ research is to fundamentally reframe our understanding and utilization of system representations and computational reasoning capabilities to support the development of system models which help engineers and project planners intelligently make informed decisions at earlier stages of engineering design. On the engineer- ing education front, Dr. Morkos’ research explores means to integrate innovation and entrepreneurship in engineering education through entrepreneurially-minded learning, improve persistence in engineering, address challenges in senior design education, and promote engineering education in international teams and settings. Dr. Morkos’ research is currently supported by the
Paper ID #17396Chair of the Department of Economics and Management in Nizhnekamsk Chemical Engineering Institutein 2002-2012. She supervised several projects for Tatarstan chemical and petrochemical companies inthe years 2002-2007 and headed the Department of Macroeconomic Research in Advanced EconomicResearch Center in the Academy of Sciences of the Republic of Tatarstan in the years 2007-2010. Hercontribution to the projects was the supervision of their economic sections (including setting of researchobjectives, project supervision, economic assessment, report writing, presentations, and publishing of re-search discoveries). She was personally involved in the strategic planning of economic development at aregional level. All these research
Paper ID #13828Impact of the You’re Hired! Program on Student Attitudes and Understand-ing of Engineering (RTP, Strand 4)Mrs. Kristin M Brevik, North Dakota State College of Science Kristin Brevik is the STEM Outreach Specialist at North Dakota State College of Science. She received her M.S. from the University of North Dakota in Chemical Engineering and her B.S. from Minnesota State University Moorhead in Physics. Her research focus is in STEM education and project design.Dr. Kristi Jean, North Dakota State College of Science Dr. Kristi Jean is associate professor in the Applied Sciences and Technology at the North Dakota State
. Students need to attend thephysical laboratory section and to finish the specific project in the labs. They need to accomplishall pre-set lab activities in a limited time with many constrains and pressure. This instructionmodel jeopardizes students’ learning effectiveness by reducing students’ interests, blockadingcreative thinking, and hindering transformative innovations. Further, the training on theemerging mobile embedded systems education is even less and unavailable.II. Portable labware designIn response to these dilemmas, we are working on developing a labware to be implemented in Page 24.1397.2our embedded systems curriculum without further
the process, students learned to design for manufacturing, build withinmaximum build envelope of the 3D printers, assembly for parts, and resolve fitment issues.Additional parts to be designed include side skirts, motor and battery covers, and a rear wing.The outcome of such learning experiences from this project can be expanded to interdisciplinaryproject oriented courses for engineering students to enhance their learning experiences.IntroductionThe goal of this project is to introduce new technology in the class room and inspire studentsabout using 3D printers for design and manufacturing processes. Most engineering colleges havebeen providing outdated technologies in current high technology era. Engineering studentsexperience lack of next
Paper ID #11879Development of a course in energy management for engineering and technol-ogy programsDr. Radian G Belu, University of Alaska Anchorage Dr. Radian Belu is Associate Professor within Electrical Engineering Department, University of Alaska Anchorage, USA. He is holding one PHD in power engineering and other one in physics. Before joining to University of Alaska Anchorage Dr. Belu hold faculty, research and industry positions at universi- ties and research institutes in Romania, Canada and United States. He also worked for several years in industry as project manager, senior engineer and consultant. He has
Engineering Equity Extension Project and served as a curriculum consultant on a National Science Foundation Gender Equity grant. She also co-authored the Engineering Connections to STEM document published by the North Carolina Department of Public Instruction. She is currently serving on a commit- tee with the National Academy of Engineering, Guiding the Implementation of K-12 Engineering.Dr. Jerome P. Lavelle, North Carolina State University Jerome P. Lavelle is Associate Dean of Academic Affairs in the College of Engineering at North Carolina State University. His teaching and research interests are in the areas of engineering economic analysis, decision analysis, project management, leadership, engineering management and
and vocational pathways. Dr. Lande received his B.S in Engineering (Product Design), M.A. in Education (Learning, Design and Technology) and Ph.D. in Me- chanical Engineering (Design Thinking) from Stanford University. Dr. Lande is the PI on the NSF-funded project ”Should Makers Be the Engineers of the Future” and a co-PI on the NSF-funded project ”Might Young Makers Be the Engineers of the Future?”Dr. Shawn S. Jordan, Arizona State University, Polytechnic campus SHAWN JORDAN, Ph.D. is an Assistant Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State University. He teaches context-centered electrical engineering and embedded systems design courses, and studies the use of context
. Agustin Irizarry-Rivera P.E., University of Puerto Rico, Mayaguez Campus Agust´ın Irizarry-Rivera is professor of electric power engineering at the University of Puerto Rico, Mayag¨uez (UPRM). He holds a Ph.D. (Iowa State), an M.S.E.E. (Univ. of Michigan-Ann Arbor), and a B.S.E.E. (UPRM). He conducts research in the topic of renewable energy and how to adapt the existing power grid to add more of these resources in our energy portfolio. He has served as Consultant on renewable energy and energy efficiency projects to Puerto Rico’s Government agencies, municipalities, private de- velopers and consulting firms in and outside Puerto Rico. He has also served as expert witness in civil court cases involving electric hazard
powerful, GD seemed almosttoo flexible and complicated to a number of students whose computer literacy was stilldeveloping. In following semesters, we plan to use BBL as main platform, supplemented byGD.Introduction“Introduction to Engineering Design” is a course taken mostly by first- and second-year studentsin the Mechanical and Mechatronic Engineering programs at California State University, Chico.This course represents the first engineering design experience for most students in the programs.Students are instructed to keep a notebook in most of lab- and project-oriented courses in ourcurriculum, including “Measurements and Instrumentation” and the senior Capstone designproject. Specific format of these notebooks may vary, depending on the