, research experiences with faculty and outside laboratories, professionaldevelopment activities, academic support, social integration, and mentoring.15 As adult learnersmake up an increasing portion of enrollment at universities, understanding how to increase theperformance and retention of this subpopulation is a significant issue facing institutions of highereducation. Research on student retention has started to address the unique characteristics andchallenges of adult learners, but there are still open questions about the effectiveness of programproposals.14, 16 There has been significant research related to retention of other minority groups,which may be instructive to future research and program proposals to address adult learnerretention.15
University of Minnesota Duluth faculty, he spent four years at the Natural Resources Research Institute as a Research Fellow in the Center for Water and the Environment engaged in computational toxicology research. His current research interests include inquiry-based laboratory activities and the flipped classroom.Dr. Joshua W. Hamilton, University of Minnesota DuluthProf. Elizabeth M. Hill, University of Minnesota Duluth Dr. Hill is focused on active learning teaching methods and research for engineering education. After receiving her Ph.D. from the Georgia Institute of Technology, Dr. Hill spent several years working on polymer processing research and advanced materials manufacturing. She has an extensive background in
first part, the model development, students are guided (usuallythrough carefully crafted laboratory experiences) to develop concepts and gain familiarity withthe associated representations for those concepts. The students become accustomed to referringto their laboratory data as the authority on scientific relationships. In the deployment phase thatfollows, students apply the model to a variety of situations and test the limits of the model, oftenthrough problem solving and sometimes via lab practica. Incorporating engineering applicationsin the deployment provides the ideal structure for seeing the relationship between fundamentalscientific understanding and well-planned engineering.The Ohio State University has offered a series of Modeling
laboratory settings.The multi-disciplinary nature of ergonomics and its broad application in many domains (e.g.,transportation, manufacturing, aviation, medicine, product design, software development) meansthat potential course topics are numerous and therefore the instructor usually has much latitude indesigning course coverage and types of assignments.In practice, the broad range of topics within ergonomics can be included in a variety of IEundergraduate courses. Typical course names include Ergonomics, Human Factors, MethodsEngineering, Safety Engineering, Cognitive Engineering and Work Design, among others.6 In a2015 review of the 94 ABET accredited IE programs, Jane Fraser7 states that 90% of thoseprograms require work methods, human factors or
, the heat transfercourse is taught in the junior year over a 10-week quarter with three 65-minute classes and a 90-minute laboratory session per week.In 2015, heat transfer was taught in an Inverted Classroom (IC). IC promotes students’ self-directed learning in fundamental heat transfer principles using online videos, quizzes, andinteractive problems outside of class time. Class time was used, in part, for mini-lectures,demonstrations, questions/answer sessions to correct student misconceptions, and exams toensure attainment of engineering fundamentals. However, the majority of class time was freedfor students to work on authentic engineering problems (AEP). These problems are key to theinstructional framework. The problems were developed by
includes hands-on re-configurableelectronics laboratories, we will be able to provide students in these programs state-of-the-arttraining tools that match the expectations of industry.FPGAsFPGAs were created approximately 15 years ago by the Xilinx Corporation [3]. Xilinx is still thelargest manufacturer of this technology in the world [4]. FPGAs are not only programmedthrough a traditional schematic fashion, they are also programmed using HDL. HDL is used todescribe the behavior of the circuits that are being created. Although HDLs describe nearly alladvanced circuits, certain circuits can be automatically synthesized, meaning that HDL code canbe rendered from a computer directly into a working design. This is particularly true of“reconfigurable
environment suggesting thatnontraditional students may find active learning more disruptive. This preliminary study suggeststhat using classroom response systems (clickers) in the 1st year curriculum with large class sizesmay lead students to feel that the class was disruptive and that active learning was not as positiveof an experience as active learning environments later in the curriculum.Introduction The President’s Council of Advisors on Science and Technology recommends increasingthe number of STEM students by 34% annually using classroom approaches engaging studentsactively and replacing standard laboratory courses with discovery-based courses1. The number ofSTEM students in higher education is expected to rise over the next decade
Paper ID #16519Research and Instructional Strategies for Engineering RetentionDr. Claudia J Rawn, University of Tennessee, Knoxville Claudia Rawn is an Associate Professor in the Materials Science and Engineering Department at the University of Tennessee, Knoxville. She is also the Director of the Center for Materials Processing. Prior to joining the University of Tennessee full time she was a Senior Research Staff Member in the Materials Science and Technology Division at Oak Ridge National Laboratory and a Joint Faculty Member in the University of Tennessee’s Materials Science and Engineering Department. She received her
as possible. This paper is organized as follows. We initially provide an overview of the SoftwareFactory approach that is used with selected K-12 students. We then provide an overview of thecase study, followed by descriptions of the case study phases –selection, instruction andimplementation. We then describe the outreach component and the legal considerations whenworking with external partners. We conclude with outcomes, address threats to validity, andaddress future improvements to include additional K-12 students.The Software Factory The Software Factory is a pedagogical laboratory under the Software EngineeringLaboratory in the Computer Science (CS) Department at MSU, and is an educational facility forundergraduate
Paper ID #15935An International Study of the Teaching and Learning of Communication:Investigating Changes in Self-Efficacy in Four Undergraduate EngineeringProgramsDr. Lori Breslow, Massachusetts Institute of Technology Lori Breslow is the founding director emeritus of the Teaching & Learning Laboratory (TLL) at the Massachusetts Institute of Technology. An internationally recognized expert in teaching and learning in higher education, she conducts research on the development, diffusion, and assessment of educational innovation, particularly in science and engineering.Dr. Christina Kay White, Massachusetts Institute of
, ourapproach uses small reflective exercises distributed throughout the coop/internship period thatfocus on a set of professional competencies. Students complete Kolb’s cycle using the keyprocess steps of project management as a laboratory of generalization and experimentation withprofessional skills. It was concluded that students accelerated their professional developmentwith periodic reflection and experimentation along with timely assessment and feedback fromthe instructor.IntroductionAn online course was designed to promote professional development for chemical engineeringstudents during cooperative education and internships with industry. The mutual benefits ofindustrial cooperative education and internships for both engineering students and
. WCU FacilitiesManagement division has sought help in designing a project that will accomplish these goals. A10 kW grid-tied PV system has been proposed that will be centrally located on campus. Thesystem will serve as a living, learning laboratory for the campus community. The solar panels forthe system will be mounted on three structures approximately 10 to 14 feet off the ground, whichwill also provide shade and shelter from the elements. Underneath the solar panels will bebenches, tables, electrical outlets, and special hooks for students to hang hammocks. A smallgarden featuring native plant life will be planted around the solar panel structure. Smallinformational signage will be displayed throughout the garden informing visitors about
experience as a bridge construction project engineer for a construction contractor and as a research engineer for the Naval Civil Engineering Laboratory in Port Hueneme California. His teaching interests include construction equipment, cost estimating and construction process design. His research interests include highway and heavy construction methods, road maintenance methods, innovations in construction process administration, engineering education, hybrid learning and online learning. c American Society for Engineering Education, 2016 A Flipped Classroom Approach to Teaching Transportation EngineeringAbstract: The flipped classroom approach has gained increasing popularity in higher
, Curriculum, and Laboratory Improvement (CCLI) program7. The use of theresearch-to-practice cycles, while an encouraging development, has not made a large enoughchange in the ways engineering education researchers think about framing their results for useacross the broad varieties of practices. We posit that the common understanding of the research-to-practice model is one of impeding factors and that resituating the research-to-practice model isa necessary, though not sufficient, step towards transforming engineering education practice. Theobjective of this paper is to examine the limitations of the current research to practice cycle andexpand the conversation to include a broader and more nuanced understanding of whysustainable change in
based on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
low cost and exceptionally high value. They consume a polymer filament,typically polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS), converting itinto a physical object by depositing it in thin, sequential layers. The entire technology,both hardware and software, is open-source and freely available.University students, faculty and research staff at the Michigan Tech Open SustainabilityTechnology (MOST) laboratory have been researching, designing, building, testing anddocumenting versions of RepRap printers since 2010. Nearly everyone taking part in theresearch became caught up in the process of designing, printing, evaluating andmodifying parts that were used for a variety of different purposes. Researchers working
options, we decided to work withan external training organization (ETO), a corporation known world-wide as a leader increativity and innovation. Page 26.748.3A significant amount of discussion was undertaken to decide if the fieldtrip should be offered forcredit or non-credit. Upon a recommendation by the Dean of the College of Engineering, thecourse was offered for one credit. There were two reasons for this decision. First, students wererequired to participate in approximately twenty hours of lecture and laboratory activities over thefour-day trip. Second, offering the course for credit allowed the students’ participation to appearon their
experience that emphasized the interdependency of manufacturing and design with a focus in business development.2-‐3 The Learning Factory was originally developed jointly by Pennsylvania State University (PSU), University of Washington (UW), and University of Puerto Rice-‐Mayaguez (UPR-‐M) in collaboration with Sandia National Laboratories through the Manufacturing Engineering Education Partnership (MEEP) funded from the ARPA TRP. This approach to manufacturing engineering education provides balance between engineering science, engineering practice and hands-‐on experiences. Furthermore, the National Academy of Engineering published their attempts to answer the
, genuinely open-minded and interested in growing as a leader.Student-centered approach Page 26.906.10Engineering students face a demanding course load. In the design of this program, the directorswere sensitive to academic load, and as a result, created a concentration in engineeringleadership rather than a minor. Classes are all offered late Friday afternoons at a time whenthere no other engineering classes are scheduled, ensuring that accepted students will be able tocomplete the three-year program by graduation.In addition, the classroom and indeed, the entire program is treated as a laboratory, where allinvolved (participants and instructors alike
Paper ID #9940Virtual Community of Practice: Electric CircuitsProf. Kenneth A Connor, Rensselaer Polytechnic InstituteDr. Lisa Huettel, Duke University Dr. Lisa G. Huettel is an associate professor of the practice in the Department of Electrical and Computer Engineering at Duke University where she also serves as associate chair and director of Undergraduate Studies for the department. She received a B.S. in Engineering Science from Harvard University and earned her M.S. and Ph.D. in Electrical Engineering from Duke University. Her research interests are focused on engineering education, curriculum and laboratory
(Sawyer, 2012). For the purposes of this project, innovationis defined broadly as the pursuit of a creative, imaginative, or inventive solutions duringengineering coursework (as opposed to, for example, carrying out a set of laboratory proceduresor following directions in a computer learning module).Instrument Development OverviewThe purpose of this project was to develop an instrument to assess the emergent characteristics ofstudent groups in engineering classrooms and examine them in relationship to studentengagement and student innovation. Our strategy for developing the items was to develop aconceptual framework that described collaborative emergence based on extant literature, writeitems to reflect that framework, and then administer them to
pursuing a career inindustry or consulting through a course-based, practicum-oriented program. The program willinclude laboratory components and industry-related collaborations to provide students with Page 26.484.2experiential learning and professional skill development.Within civil engineering at Rose-Hulman Institute of Technology, there is precedence of adiscipline-specific, one-year course-based Master of Environmental Engineering program. Sucha program was recently developed and launched for structural engineering1. The programconsists of a year of course-work and a practicum that must be completed in the summer prior tothe academic year of
coordinating the curriculum to combine four traditionalundergraduate years with a fifth graduate year to receive stronger analytical training. Theprogram also includes the integration of industrial experience through summer internships andmentoring of industry-sponsored product-oriented projects.BS-MS students follow the normal undergraduate curriculum in ME through their third yearwhile taking two graduate-level classes in addition to the normal BS course load in their fourthyear. Immediately after receiving the BS degree, students are required to work in industry orgovernment laboratories to gain practical work experience while earning academic creditstowards their graduate degree during that summer. Upon returning from their summerinternships
women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three engineering texts on classical controls, linear systems
the director of marketing for Drexel’s College of Engineering and director of operations for Worcester Polytechnic Institute - Engineering. Now, as CEO of Christine Haas Consulting, LLC, Christine travels around the world teaching courses to scientists and engineers on presentations and technical writing. She has taught clients across gov- ernment, industry and higher education, including Texas Instruments, Brookhaven National Laboratory, European Southern Observatory (Chile), Simula Research Laboratory (Norway) and the University of Illinois-Urbana Champaign. Christine works closely with Penn State University faculty Michael Alley (The Craft of Scientific Presentations and The Craft of Scientific Writing) and
. He has been working on thin film solar cell research since 1979 including a Sabbatical Leave at the National Renewable Energy Laboratory in 1993. He has also worked on several photovoltaic system projects Dr. Singh has also worked on electric vehicle research, working on battery monitoring and management systems funded primarily by federal agencies (over $3.5 million of funding). Dr. Singh has consulted for several companies including Ford Motor Company and Epuron, LLC. He has also served as a reviewer for the US Department of Energy and National Science Foundation. Dr Singh has over 100 conference and journal publications and holds six issued US patents. Dr. Singh’s recent work is focused on improved, energy
physics and/or calculus course on top of that. Weneed to figure out a better way to help students manage their course load, but the issue is really ata larger programmatic level in which some of the courses are more demanding than the unit loadstudents receive credit for.Future ImplementationsWe will continue the program in the spring quarter with Strength of Materials (Mechanics ofMaterials), Strength of Materials Laboratory, Numerical Methods, and Statistics. Both of theproject tasks will be revisited while covering stresses and forces in rods, beams, columns, andbeam columns in Strength of Materials. The Numerical Methods class will make use of theproject by creating parametric simulation modules. Statistics will be integrated with the
thesedevices. Finally, the paper is ended with conclusions and future work.2. Course descriptionThe overall goal of this new teaching practice is to equip students with the knowledge ofadvanced touch sensing technologies and developing microcontroller-based applicationsinvolving various touch sensing devices to solve engineering problems in practice. We taught theadded course materials in 5 weeks, two hours of lecture time and three hours of laboratory perweek. It has three major objectives. To improve students’ awareness of common and different features among major touch sensing technologies. Page 26.1463.3 To introduce students
Communication for Chemical EngineersAbstractGood communication skills are vital for any career. Engineers are often stigmatized as beingpoor communicators, and while this is merely a stereotype, many engineers and STEM studentsdo express disinterest in writing and other forms of communication. While communication isincorporated in many undergraduate chemical engineering courses through laboratory reports,presentations, and informal short answer questions, these items are generally evaluated for theirtechnical accuracy, not on aspects of their delivery and presentation. In the chemical engineeringdepartment of a large Midwestern university, students are required to take two courses in writingand communication. The
discusses a major group project using model rockets in atwo-hour per week laboratory that is a part of a two-credit course in exploration of engineeringand technology at the Old Dominion University in Norfolk, Virginia.Introduction:A model rocket is a combined miniature version of real launch and space vehicles. Once amodel rocket leaves the launcher, it is a free body in air. Model rockets have been used asprojects before. Boyer et al. [1] report a similar project for sophomore aerospace engineeringstudents. Figure 1 shows a cross section of a ready to launch model rocket with a B6-4 solidengine. Page 26.1643.2Figure 1. Single stage model rocket with