Paper ID #11268Design of an Autonomous Pace Car for Athletic Training: a MultidisciplinaryUndergraduate Research ExperienceMr. Martin Fevre, Elizabethtown College Martin Fevre is an undergraduate student currently pursuing his B.S. in Engineering with a concentration in Mechanical Engineering at Elizabethtown College. During his first three years at Elizabethtown Col- lege, he has found that he is adept at building analytical models with software such as MATLAB, like he did in his Numerical Methods course. Beside his undergraduate research, Martin started a group project featuring a quadrotor helicopter that aims to map
education strategies as well as the technologies to support the 21st century classroom (online and face to face). He also has assisted both the campus as well as the local community in developing technology programs that highlight student skills development in ways that engage and attract individuals towards STEAM and STEM fields by showcasing how those skills impact the current project in real-world ways that people can understand and be involved in. As part of a university that is focused on supporting the 21st century student demographic he continues to innovate and research on how we can design new methods of learning to educate both our students and communities on how STEM and STEAM make up a large part of that
Paper ID #14085Building Human Capacity to Meet Demand for Engineers and Scientists inthe Middle East and North Africa (other)Dr. Hamid R. Parsaei, Texas A&M University at QatarMr. Brady Creel, Texas A&M University at Qatar Brady Creel is project manager for the Office of Academic Outreach at Texas A&M University’s branch campus in Doha, Qatar. The Office of Academic Outreach oversees K-12 and pre-college STEM enrich- ment programs, in addition to teacher professional development and strategic school partnerships, via the Texas A&M University at Qatar Initiative in Engineering Leadership, Innovation and Teaching
and the best senior project supervisor in 2003-2004 academic year. He has served as a consultant in three companies in the field of air conditioning and hydraulic power plants.Karla C. Lewis Ph.D., SERVE Center at UNCG Dr. Karla C. Lewis has been with SERVE Center for over fourteen years and served as a Project Director with SERVE’s Regional Educational Laboratory Southeast (2006 – 2011). In this role, she supervised the work of the SERVE Center State Liaisons (senior staff assigned to each southeast state) and worked collaboratively with them to understand and respond to state educational agency (SEA) needs. Currently, her work focuses on evaluations of Early College High School projects, student support services, and
assistant where she works with WV schools to inspire students to pursue a STEM career. c American Society for Engineering Education, 2020 STEM Ambassadress Program (Research-to-Practice) Strand: OtherIntroductionIn this paper we describe our experience with our “STEM Ambassadress Program,” in whichfemale university students in STEM Background serve as the STEM Ambassadresses of femalehigh school students. The project is sponsored by American Association of University Women(AAUW) and NASA WV Consortium. The ambassadresses, who graduated from high schoolsrecently, will mentor high school girls in their high
Michigan developed the Social Engagement Toolkit(SET), a library of training on various topics related to socially engaged design practices. At aminority-serving institution, several workshops from the SET were implemented to support asemester-long, extra-curricular project experience for students majoring in Computer Sciencewho aimed to design software solutions to address real-world problems. SET workshops onseveral topics, including Introduction to Socially Engaged Design, Crafting Need Statements,Ecosystem Stakeholder Mapping, Interviews, User Requirements and Specifications, IdeaGeneration, and Concept Selection and Prototyping were used to provide scaffolding forstudents’ design projects and teach critical skills that are not often
was a postdoctoral fellow at Advanced Technologies and Regenerative Medicine, LLC. She received her doctoral degree in Biomedical Engineering from Tufts University, M.S. degree from Syracuse University, and B.S. degree from Cornell University. ©American Society for Engineering Education, 2024 Work in Progress: Promoting Equitable Team Dynamics in a Senior Biomedical Engineering Design CourseIntroductionTeam-based engineering design projects are common mechanisms to promote hands-onengagement with the engineering design process. Team-based projects are often implemented inboth introductory and senior level courses in the undergraduate engineering curriculum.Navigating the complex team
Design) in the fall semester and ENGR 103 - Introduction toEngineering (which involves a hands-on engineering project and a project report) in the spring semester.To investigate the program and understand students’ experiences, qualitative analysis of students' reportswas conducted using thematic analysis via OpenChatGPT. The results revealed four themes: (1)Fundamental Processes, (2) Challenges in Execution, (3) Teamwork and Collaboration, and (4) Learningand Adaptation. These findings indicate the effectiveness of dual-credit engineering in engaging youngNative Americans in engineering and align with ABET students' learning outcomes. The paper details thepartnership, course specifics, challenges, and findings from students' perspectives.1
, Manufacturing and Systems Engineering (IMSE) Department at The University of Texas at El Paso. He holds a Ph.D. degree in Computational Science Program. He has years of research experience in different projects in the field of image data mining, machine learning, deep learning, and computer simulation for industrial and healthcare applications. In addition, Dr. Rahman has taught various engineering courses in industrial and manufacturing engineering. His research area covers advanced quality technology, AI application in smart manufacturing, health care applications, computational intelligence/data analytics, and decision support systems.Nijanthan Vasudevan, Drexel University ©American Society for
exchange where students enrol and study for either one semester or an academic year at an institution located in another country. 2. International project refers to a senior-year capstone design project with the involvement of another (host) country, often including sponsors and co-workers from the host country. 3. International work placement involves work at a foreign firm for a duration that ranges anywhere from 4 months to an entire year. 4. International field trip is usually a short-duration visit (one to two weeks) to one or more foreign countries, often including visits to other universities, research laboratories, and industrial establishments (factories, plants, etc.). 5
provide PD that aligns to The Next Generation Science Standards (NGSS). Since 2008 she has provided teacher PD to science teachers in the tri-state area, including international visiting teachers and scholars. Dr. Borges’ research interests include: building STEM professional-teacher relationships, diversity and equity, and enhancing urban science teaching and learning.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project
- sign and Engineering). His engineering design research focuses on developing computational represen- tation and reasoning support for managing complex system design. The goal of Dr. Morkos’ research is to fundamentally reframe our understanding and utilization of system representations and computational reasoning capabilities to support the development of system models which help engineers and project planners intelligently make informed decisions at earlier stages of engineering design. On the engineer- ing education front, Dr. Morkos’ research explores means to integrate innovation and entrepreneurship in engineering education through entrepreneurially-minded learning, improve persistence in engineering, address
universities such as Purdue University, University of Puerto Rico, University of South Florida,and the University of Illinois at Urbana-Champaign. Some of them end up working for US Corps ofEngineers national laboratories (Acosta, 2004).Involvement in Undergraduate Research Experiences (URE) is related to considerably increasedpersistence and improved academic performance of students in science, technology, engineering, andmathematics (STEM) disciplines. UREs have shown to promote students’ sense of project ownership,self-effectiveness, and scientific identity. The advantages derived from URE have a very good impact onminority students and their improved STEM retention (Vater, 2019).Case Studies:Case study 1: University of Cincinnati Structural
, New York. At DiLab Catalina teaches and coordi- nates the Engineering Challenges course which aims to initiate freshmen students in to engineering design practices by encouraging students to develop a project following a user-centered design process. She also teaches Visual Thinking, the exploratory course of the Major in Engineering, Design, and Innovation. This course addresses the theories and ideas that sustain the visual thinking process as well as method- ologies and practical implementation of visual representation through infographics, computer graphics, and physical computing. The course focus on representing the narrative of the findings using visual tools. Catalina has been directing FabLabUC
regarding “team performance” or “team dynamics,” typically assessedthrough measures of team communication, leadership, and project management. The pervasiveassumption underlying much of this research is that effective team functioning results ineffective innovation outcomes. Yet, the relationship between team dynamics and innovationoutcomes has not been well studied. Most of the existing research does not assess theeffectiveness of the final product of teamwork, nor does most existing research examineinnovation outcomes in relation to team functioning. In this paper, we examine the relationshipbetween team dynamics and innovation outcomes. Using an entrepreneurial simulation in anupper division thermodynamics course, this mixed-methods study
Lecturer and is the recipient of the Fulton Outstanding Lecturer Award. She focuses on designing the curriculum and teaching in the freshman engineering pro- gram. She is also involved in the NAE Grand Challenges Scholars Program, the ASU ProMod project, the Engineering Projects in Community Service program, the Engineering Futures program, the Global Freshman Academy/Earned Admission Program, and the ASU Kern Project. Dr. Zhu also designs and teaches courses in mechanical engineering at ASU, including Statics, Mechanics of Materials, Mechan- ical Design, Mechanism Analysis and Design, Finite Element Analysis, etc. She was a part of the team that designed a largely team and activity based online Introduction to
development efforts that support students in their STEM education and career pathways pursuits. VanIngen-Dunn as built her career on years of experience as engineer and project manager in human crashworthiness and safety design, development and testing, working for contractors in commuter rail, aerospace and defense industries. VanIngen-Dunn has an MS degree in Mechanical Engineering from Stanford University and a BSE degree in Biomedical Engineering from the University of Iowa. She serves on the University of Iowa’s College of Engineering Advisory Board, and the YWCA Metropolitan Phoenix Board of Directors.Miss Maria A. Reyes, Phoenix College With over 25 years of higher education experience, Maria Reyes has devoted
components.Mechatronics is a newer branch of mechanical engineering that is a synergistic combination ofmechanical, electrical, electronics, computer science, control techniques, and informationsystems. Integrating mechatronics content in mechanical engineering curriculum has been achallenge since it has been viewed as a significant deviation from traditional courses. In the past,pedagogical approaches like semester-long, project-based classes, or linking mechatronics toother engineering disciplines, have been used to integrate mechatronics into the mechanicalengineering curriculum, with varying results. Furthermore, teaching an interdisciplinary class ofthis nature within a semester is a difficult pedagogical endeavor. To overcome these issues, thetopics and
, Texas A&M University Isaac Sabat’s program of research broadly focuses on understanding and improving the working lives of stigmatized employees. He is particularly interested in examining strategies in which these employees can engage, such as disclosing or acknowledging their identities, to effectively remediate the workplace obstacles that they face. He has conducted various interrelated projects that examine how the effectiveness of expressing one’s identity is impacted by the extent to which stigmas are previously known, visible, or discovered by others over time. This is a novel area, given that disclosures have previously been conceptualized as a dichotomous, all-or-nothing phenomenon. This work has been
Paper ID #22056Serving through Building: Sustainable Houses for the Gnobe People in Ciene-guita, PanamaProf. Lauren W. Redden, Auburn University Lauren Redden holds a Masters degree in Building Construction from Auburn University. Her indus- try experience includes working in Pre-Construction Services as an Estimator, and working in various positions in Operations including Project Management and Quality Control/Assurance. She is currently a Tenure Track Assistant Professor with the McWhorter School of Building Science at Auburn Univer- sity. Her research interests center around construction education, mobile technologies
research confer- ˇ e Budˇejovice, Czech Republic in August 2016. In addition, he has been named as one of 14 ence in Cesk´ Jhumki Basu Scholars by the NARST’s Equity and Ethics Committee in 2014. He is the first and only individual from his native country and Texas Tech University to have received this prestigious award. Fur- thermore, he was a recipient of the Texas Tech University President’s Excellence in Diversity & Equity award in 2014 and was the only graduate student to have received the award, which was granted based on outstanding activities and projects that contribute to a better understanding of equity and diversity issues within Engineering Education. Additional projects involvement
schedule and cost analysis and considereda topic for upper management to deal with. However, as projects become more complex and theuncertainty associated with technical aspects of them increases, the risks related to not only thoseprojects but also the environment have to be considered from a holistic or systemic perspective. Inthis dynamic environment, it is important for engineers and engineering managers to understandvarious aspects of risk management such as risk identification, risk tracking, risk impactassessment, risk prioritization and risk mitigation planning, implementation and progressmonitoring.In this paper, the authors review all the existing courses in their Engineering Management (EM)program and analyze the current offerings of
4 Temple University, Department of Mechanical EngineeringIntroductionTeam-based projects are widely used in engineering courses [1], particularly product or processdesign courses in mechanical and civil engineering. While the intention of team-based designprojects is to provide all students with a range of technical and non-technical masteryexperiences [1,2] students enter into these experiences with differences – whether real orperceived – in relevant technical skills that undermine individuals’ participation and persistenceon team-based work. Prior research indicates male engineering students are more confident thanfemales in their math and science abilities, as well as their abilities to solve open-ended problems[3-6
awayfrom this dynamic and empower students to name and challenge the oppression they face, theauthors of this paper collaborated to create and carry out the Justice, Equity, Diversity, andInclusion (JEDI) Ambassador Program (or "JEDI" for short). JEDI is a co-curricular programthat employs undergraduate engineering students, called "JEDIs", to engage in diversity, equity,and inclusion (DEI) projects across the domains of education research, K-12 outreach, andstudent programming with the guidance of a graduate student or university support staff mentor.JEDI was designed as a liberatory space for participants to bring their whole selves,collaboratively explore ideas, and take action against inequities they observed or experienced.The attempted
years compared to earlier years as reflected in the sample data shownin Table 3, and we believe this is largely due to increased faculty engagement and positivityrelated to EML. Table 3 Average Student Ratings Related to E-learning Modules Question 2015* (n = 98) Fall 2020* (n = 133) The instructor reinforced what you learned in the e-learning 3.58 3.95 module through an assignment or a project The assignment or the project was effective in reinforcing 3.44 3.91 what you learned
students to learn,adopt and implement attributes of social innovation philosophies and servant leadership via case studiesand discussion during the class meeting times. Weekly modules were developed to include one socialinnovation case study (including presentation rubric) per week and leadership lessons. The classproceeded in the flipped classroom approach, where each student presented their perspective andanalysis of the assigned social innovation case study, followed by interactive discussion within thegroup. Throughout the class, students advanced their understanding of the attributes of socialinnovation and leadership and its context to globalization and social equity. Concurrently, students weredivided among two groups for the class project
learning experiences designed to engage and support youth from populations traditionally underrepresented in science and engineering disciplines. Much of her work focuses on public participation in science and engineering with transparency and for the purpose of solving problems. She holds a master’s degree in anthropology and a doctorate in political science.Ms. Maia Werner-Avidon, MWA Insights Maia Werner-Avidon served as the primary evaluator for the TechHive project during its initial years. Prior to starting her evaluation firm, MWA Insights, Ms. Werner-Avidon served as a Research and Evaluation Specialist at the Lawrence Hall of Science (Berkeley, CA) for eight years, where she worked on the TechHive project
ATE) Center of Excellence from 1994-2017, leading initiatives and grant-funded projects to develop educational leadership and increase the quantity, quality and diversity of highly skilled technicians to support the American economy. Currently serving as Principal Investigator, Mentor-Connect: Leadership Development and Outreach for ATE-2 and -3; and Principal Investigator, Collaborative Research-HSI ATE Hub-Diversifying the ATE Program with His- panic Serving Institutions Using Culturally Inclusive Mentoring and ATE Resources. The SC ATE Center is widely known for innovative initiatives impacting advanced technological education as well as devel- oping and broadly sharing successful educational models and
invited toparticipate in the research. C+C:TT focused on providing hands-on lessons about thefundamentals of circuitry and basics of computer programming through the lens of music, taughtby four college-aged student researchers. The program commenced by encouraging students toutilize these newly-learned skills and tools in a collaborative final project, combining what theylearned from each of the prior sessions. Participants consisted of a diverse group of 7th-12thgrade girls who expressed an interest in exploring the STEAM fields and/or in furthering theirknowledge and confidence in computer programming. Major areas of this program includedcircuitry, coding, the combination of music and technology, and collaborative challenges. Theoverall goals
, Hampton University, Jackson State University, North Carolina A&T University, Prairie View A&M University and Tuskegee University. I. AbstractThis paper describes a project of cooperation among thirteen (13) Historically Black Collegesand Universities (HBCU) electrical and computer engineering programs. The intent is to developan HBCU Engineering Network (HBCU-EngNet) with focus on the development,implementation, and expansion of an Experimental Centric based instructional pedagogy (ECP)in engineering curricula used in these HBCUs. The ECP is being implemented at the variousHBCUs to allow students of varying learning styles the opportunity to learn at their own paceand in their own environments, by providing them an alternative way to