challenging situations, students relied on what they learned about during the SBP.Finally, we conclude with questions based on a transition theory in student development forpractitioners to consider when developing or implementing a SBP.Keywords: undergraduate, engineering, transition theory, first-year engineering 1. Introduction The transition from high school to college is a notoriously difficult time for first-yearstudents. Adjusting to a new environment, coursework, and/or university demands can presentchallenges for students in their first year of college [1], [2]. For engineering students, thistransition can be particularly challenging due to the rigor of engineering coursework and theneed to navigate social integration into the
, access, and diversity for broadening participation and reducing systemic barriers a Gregory E. Triplett and aRachel L. Wasilewski a Virginia Commonwealth University, Richmond, VAThe lack of equality in the traditional American educational system [1] poses an imminent threatto American innovation and global competitiveness. As the United States experiences changingdemographics [2] and a greater shift towards a technology-driven society [3], it is not tappinginto the entire talent pool, as the rest of the world is moving to more inclusive pedagogicalmodels [4]. Given the quality of the future engineering
to learn directly from their peers.IntroductionSince 2014, women have comprised just one-fifth of those graduating with associate degrees incomputing and information systems (CIS) [1]. Due to the growth in the number of CIS associatedegrees conferred to men, the proportion earned by women has diminished by more than halffrom 1999 levels [1]. The CIS gender gap in community colleges 1 (CCs) is particularlyconcerning from an equity perspective, since these institutions provide crucial access to post-secondary education, including for the socioeconomically disadvantaged, first-generation, older,and Hispanic college students they disproportionately serve [2]. However, relatively littleresearch and programming focuses on supporting gender equity
stuff like this is always going to happen to us. . . we're always taught to turn the other cheek, water down our back and to just keep moving forward. ~ChristinaLGBTQ+ students continue to be underrepresented in undergraduate engineering programsdespite decades of diversity, equity, and inclusion initiatives in science, technology, engineering,and mathematics (STEM) education [1]. Prior literature indicates that the underrepresentation ofLGBTQ+ students in STEM persists due to the heteronormative culture of engineering [2].Furthermore, Leyva et al. [3] theorized that queer students of color face
not necessarily reflect the views of the National ScienceFoundation. Dr. Edith GnanadassDr. Cathy D. Howell Dr. Lisa R. MerriweatherRev. Dr. Martin Luther KingBirth of a New Age, 195680% of all STEM faculty are white or Asian25% of all STEM full professors are womenLess than 10% are from racially minoritized groups 2.5% are Black 4.6% Latine 37% of American colleges and universities have no Black STEM faculty 28% have only 1 Black STEM faculty53% STEM professors at HBCUs are White men. 22% of STEM faculty are foreign-born/international75% of foreign-born/international faculty are in STEMUniversity Personally Cultural exchange Welcomed in departments Globalization
then transcribed via Rev, a professionaltranscription service. To initiate the data analysis process, each researcher reviewed the transcripts of twomembers to develop a set of inductive codes that categorized specific identity-relatedexperiences for the participants (Chandra & Shang, 2019). The research team then met andcondensed each of their emergent codes through pattern coding to yield three primary codes: 4(1) Immigrant Capital (descriptions of resources, positioning, and/or advantages of holdingimmigrant status); (2) Minority Status (descriptions from students involving experiences relatedto the racial/ethnic identities in
understand the reasons for the barriers butalso a framework for effective aspiration that addresses those barriers to improve the access,retention, and successes of URM in STEM education. For example, URM faculty are almostnonexistent in science and engineering departments at research universities due to this lack ofaccess compared to majority [1]. Thus, URM students are likely to find themselves withoutURM faculty needed to serve as optimal role models as those that “look like them,” and non-URM faculty members who are willing to engage in cross-racial mentorship often lack the multi-cultural competence to be comfortable in that role. These barriers limit the number of URMs completing the PhD in STEM and advancing tothe professoriate. The
better understand the thought process of individuals who are prospectiveor future employees of engineering organizations, we sought to address these research questions: 1. What does the content of National Lab websites convey to the engineering students about the nature of an engineering career? 2. What does the content of National Lab websites convey to the engineering students about organizational culture at these engineering organizations?Methods This study is a part of a larger project geared towards understanding career concepts ofstudents from historically underrepresented groups in engineering. We mention this because keyterms from an on-going systematic literature review informed the selection of data used in
twoother distinction programs, 1) Distinguished Engineer and 2) Distinguished Designer, which areappointments that lead to being a Fellow. All 3 positions are at the executive level and areoften referred to as IBM’s technical executives and thought leaders. They are the company’s“most exceptional” technical professionals and visionaries who are recognized inside andoutside IBM as experts in their field. They have won five Nobel Prizes, five Turing Awards, andbeen responsible for nearly 10,000 U.S. patents. This pre-eminent community of technicalprofessionals has since been emulated by other organizations as well.Today, this community acts as the “technical conscience” of the company, responsible formaintaining IBM’s technical edge. They also
theirexperiences are not well presented in considerable diversity, equity, and inclusion (DEI)initiatives, other subgroups, such as Southeast Asian Americans, are substantially underserved inengineering education. Limited research has been directed to explore the interactions betweentheir ethnic identities and the engineering identity among Asian American students. In this paper,we conduct a scoping review of the current literature in engineering education to explore thelandscape of Asian American students’ experience in engineering. This review addresses tworesearch questions: (1) What are the motivations of these studies in exploring Asian Americanengineering students’ experiences? (2) What are the gaps in the existing literature on AsianAmerican
unintended, lessons, attitudes, and beliefs thatindividuals experience as part of their engineering education [1]–[7]. HC manifests fromhistorical, structural issues, such as sexism and racism, to institutional and interpersonalmessages within engineering [8], [9]. For example, racist policies like segregation excludedAfrican American or Black people from higher education [10], and they remain marginalized asonly 4.5% of 2020 US engineering bachelor’s degree earners were African American or Black[11]. Researchers have contributed significant scholarship on the experiences of historicallymarginalized people in engineering [12]–[16]. However, given the stagnation of inclusion ofhistorically marginalized people in engineering, it is necessary to
equity in STEM:1. In what ways have big data and algorithms been used to understand equity in STEM?2. What are the limitations of using big data to analyze equity in STEM?3. What research is missing in the area of using big data and algorithms to understand equity in STEM, especially considering intersectionality? 10It is important to realize that current research focusesmore on documenting or predicting than understanding;big data and algorithm analysis have uncovered patternsof inequity in STEM but are not always able to explainhow those patterns arose nor how to ameliorate them.Datasets are themselves limited and thus limit our abilityto fully explore patterns.That said
students.Even more concerning is the drop in BIPOC men at the graduate degree level.Engineering drop-offs occur at key transition points but it’s not a simple “leakingpipeline” analogy.Associates level includes engineering technology and engineering.What’s not shown is that students can’t always get “back into the pipeline”(Cannady, Greenwald & Harris, 2014) [2].We prefer to refer to “pathway” not pipeline because a pathway is open, while apipeline is closed.Targets were identified from previous work with the “50k Coalition”(https://50kcoalition.org).Target #1: substantially increase the number of BIPOC and women undergraduatedegrees to 100,000 by 2026 (more than 31,000 beyond the current trajectory).Target #2: substantially increase the number of
been working on this project that I will be presenting today entitled; The College Experiences of College Students with ADHD: A Scoping Literature Review.● I will start by giving an introduction to the topic, followed by a discussion of the literature on the college experiences of these students. Followed by the purpose of our work, the methods, the results, and our future work.● Neurodiversity describes the idea that people experience and interact with the world around them in many different ways; there is no one "right" way of thinking, learning, and behaving [1]. Students with ADHD or other neurodiversity such as autism, dyslexia, or obsessive-compulsive disorder are an invisible minority [2], and
research questions: RQ 1: How have their goals, as non-traditional students, evolved as they have transitioned into a doctoral program? RQ 2: What factors impact the agency of individuals pursuing their goals in dual roles, as doctoral students and higher education administrators?In the sections that will follow, we will discuss the framework used to guide this study, followedby the methodology that was utilized. We then analyze the findings and conclude with adiscussion on the implications and future research work.Conceptual Framework According to the social cognitive theory, people influence their own motivations andactions within a given system, and thus Bandura (1989) explains how “this model of
frameworksuggests that school counselors can play a pivotal role in promoting equity within STEM. Thereare three stages of capacity building against which counselor skill development efforts andpractices could be examined: 1) counselors’ awareness and knowledge of the professionalSTEM landscape and career pathways, 2) counselors’ communication about STEM fields withstudents, and 3) counselors’ skill development toward cultivating more diverse STEM talentconsidering individual factors and sociocultural contexts. Together the three stages suggest thatschool counselors must consider factors which might lead to inequities in STEM by gaining anawareness of STEM specific equity issues. Such awareness will allow school counselors toengage in communication and
engineering students. In 2022, Tamara received the Key Contributor Award from NSBE Region 1 for her continued efforts in supporting students in engineering. Tamara received her bachelor’s degree in Afro-American Studies and a master’s degree in Education Leadership and Policy Studies with a specialization in Higher Education, both from the University of Maryland, College Park. Tamara is a doctoral candidate in Higher Education at SU where she serves as an adjunct instructor teaching classes on identity development and the intersections of race, ethnicity, gender, sexuality, disability, spirituality, and social class. Her research interests include broadening participation in STEM, identity, diversity, equity, inclusion
Comparative Study of Online and Face-to- Face EngagementBackground and MotivationInterventions for supporting student success in challenging courses are well-established and cantake on various forms in engineering education [1]. At the University of Houston (UH), peer-facilitated workshops support key gateway courses in science, math, and engineering and requirestudents to enroll in a 1-credit hour class at a specific time offering. Before the COVID-19pandemic, these workshops were offered face-to-face and transitioned to online synchronousduring the pandemic. Currently, these workshops are again offered face-to-face with a proventrack record of improving student achievement in associated classes [2]. Workshops are led
the quote from themovie Cool Hand Luke: “What we've got here is failure to communicate [1], [2]." The luridheadline reflects ongoing debate in STEM classrooms on what credence should be given toteacher and student expectations and how to reconcile them when they are at odds. Ubiquitousstudent surveys lack scientific rigor and provide limited insight on teaching effectiveness andhow to improve student outcomes. A teacher may have happy, inspired students and angry,frustrated students in the same classroom. We seek to understand why this is so and what wouldhave helped the struggling teacher and students. Students need help learning difficult subjectmatter. Teachers need help understanding their students’ needs and guidance on best
UpdateAbstractThis paper provides an update on our research exploring the college experience of science,technology, engineering, and math (STEM) college students with attention-deficit/ hyperactivitydisorder (ADHD). Individuals with ADHD make up a growing fraction of college students.Despite their increasing college presence, little is known about their college experiences andacademic success. This project involves three sequential studies guided by the social model ofdisability. Study 1 is a quantitative analysis investigating the relationship between pre-collegefactors, college experiences, and academic success of college students with ADHD. Study 2 is ascoping literature review of the college experiences of these students, and Study 3 is aqualitative
driven by entrepreneurship. For example, only 1 in 6 employees in SiliconValley startup companies are women (Financial Times 2017). In this study, we develop a fieldexperiment designed to increase entrepreneurial proclivity in undergraduate women studyingSTEM fields. Entrepreneurial proclivity is defined as the extent of an individual’s (1) intentionsto engage in entrepreneurship, (2) efforts to acquire knowledge about entrepreneurship, and (3)entrepreneurial actions. There is a general agreement in the literature that women are less likely than men to beinvolved in entrepreneurship [1], [2]. In 2016, women were majority owners for 38% of firms,and this ownership was concentrated primarily in non-STEM retail and service industries [3],[4
NahmaniAmanda SeskoKa Yee Yeung ©American Society for Engineering Education, 2023 ACCESS in STEM: An S-STEM Project at University of WashingtonTacoma Supporting Economically Disadvantaged STEM-Interested Students in their First Two YearsAbstractAchieving Change in our Communities for Equity and Student Success (ACCESS) in STEM atthe University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and hassupported 69 students to date. This year we received Track 2 funding and welcomed our fifthcohort to campus, with funding to support ~32 additional students through 2026. University ofWashington Tacoma is an Asian American and Native American Pacific Islander-servinginstitution (AANAPISI
tailored support. Through C2WEST, Black students could also further realizeand conceptualize the access they have to their own aspirations regarding future career and lifegoals.IntroductionIn this theory paper, the aspirational capital of Black students will be examined through theC2WEST framework. A variety of research has examined the aspirations of Black students inSTEM in addition to other types of capital that Black students bring to the fields [1]–[4]. Yossodefines aspirational capital as the “ability to maintain hopes and dreams for the future, even inthe face of real and perceived barriers” [5, p. 77]. In a systematic review, Denton et al. [2]examined twenty-eight different studies that mentioned aspirational capital among
for others interested in designing and refining hands-on mechanics activitiestoward specific learning goals.IntroductionIn engineering statics courses students work with contexts and concepts from a broad range ofreal-world applications. While there are a variety of formulae and procedural ideas to be learnedand understood, it is also important to develop conceptual understanding of key course ideas.Active learning supports students’ performance in the STEM disciplines as compared totraditional lecture [1], particularly for students from historically marginalized groups [2], and cansupport the development of conceptual understanding. One way to do this is to use 3D models ofcommon statics concepts, such as vectors, forces, and moments to
of Indianapolis George D. Ricco is an engineering education educator who focuses on advanced analytical models applied to student progression, and teaching first-year engineering, engineering design principles, and project management. ©American Society for Engineering Education, 2023 WIP: Jigsaws as an Effective Approach for Development of Analytical and Collaboration Skills in Healthcare Systems and Process Design CoursesWhy Jigsaws?A Jigsaw is an active-learning method which expedites learning, collaborative problem-solving,and teamwork skills development [1-2]. Jigsaws have been used effectively in classroomsranging from K-12 to those in advanced engineering courses [3]. A Jigsaw implementation
, PhET, active learning, educational technology,educational innovation, higher education.IntroductionCurrent teaching methods in physics laboratories often involve lectures where students arepassive participants whose task is to receive information to later repeat procedures without fullygrasping underlying concepts. This approach has been demonstrated as ineffective [1]. Educationhas been under constant change. Consequently, there has been a shift towards active learningmethods where students play a more active role in their learning. [2], [3]. Given the above and inline with the changing educational landscape, the private university in which this study tookplace has adopted an active learning approach in their physics laboratories. This
formalization dueto stereotyped design guidelines. Furthermore, the current engineering curriculum designgenerally lacks the connection/cohesion among different subjects (e.g., material mechanics,structural mechanics, hydraulic mechanics, soil mechanics) for geotechnical engineeringeducation [1]. It hinders geotechnical students’ ability to gain the comprehensiveunderstanding of interdisciplinary study and further affects the ability of creative problemsolving. To address this issue, game-based learning might provide an alternative approach tostimulate the engineering creativity of geotechnical students. Creativity which is the essence of engineering can be neither explicitly taught nortrained in the traditional curriculum of geotechnical
assessment,demonstrating that the module was effective for middle school outreach. Pre/post-surveyassessments showed no significant differences in attitudes towards STEM, which was likely dueto the fact that students in YES had a strong predisposition for STEM. Overall, results motivatethe use of this module, or similar hands-on IBL modules, for outreach with K-12 students who areunderrepresented in STEM.IntroductionBiomaterials is an interdisciplinary field that employs knowledge from biology, chemistry,materials science, and engineering to create materials that improve human health [1]. To date,biomaterials have been used as medical implants, methods to promote tissue healing, molecularprobes and biosensors, drug delivery systems, and scaffolds to
participate in SL/CE: paidinternships or through taking credit hours that counts towards their degree.Literature Review:Although there are not a lot of journal papers on the topics of SL/CE, there are many conferencepapers, especially published in ASEE conference, that address these topics. For example, Koh(2020) [1], developed a “Community Engaged Design” course as a senior design capstone in asmall liberal arts college. Students were able to address pedestrian safety in their community bycoming up with a prototype for a system which detected and warned drivers of the presence ofbicyclists. Jordan (2014) [2] took their service learning all the way to Haiti by working with thelocals there to establish a solar project that can offer sustainability for
and Mentoring (iAM) Program to Promote Access to STEM ProfessionsBackgroundThe Integrated Achievement and Mentoring (iAM) Program at Hofstra University (HU) respondsto the challenge of retaining a diverse STEM student population [1]. This achievement-focusedprogram provides students early access to the hidden curriculum and contextualizes supportservices in a model that is inclusive, promotes belonging, and develops student identity locally inthe STEM community and globally as part of the University community. This is an NSFScholarships in STEM (S-STEM) Track 3 (multi-institution)-funded Program built on thetheoretical framework of legitimate peripheral participation with an emphasis on inclusivity,community, and belonging