likely due to the fast pace of the program, the time that isspent in the lab and in the field at forty hours per week and working with new people and their own uniquepersonalities and work ethic that may not mesh with their own. For example, some student mentor pairings have notbeen ideal. Personality clash can be a problem for some students that are more sensitive than others. So, changes inmentors have been made mid program for a couple of students. These changes did work out much better in the endbut was still a challenge to face.In order to help with the stress that arises during the program, the new workshops are being developed that will teachthe students new methods for dealing with stress. Mental and physical health components will be
science from Purdue University in 1978. She joined Michigan Tech’s faculty shortly after completing her doctorate and chaired the department of computer science from 1996 to 2010. Her research interests are in software engineering, including software pro- cesses, software measurement, and software engineering education. She also has interests in ethical and social aspects of computing and has been active in efforts to increase the number of women in computing for many years. She has been a co-PI on nearly $1.5 million in grants from industry and the National Science Foundation. Dr. Ott is a 2010 recipient of the ACM SIGSOFT Retrospective Paper Award for the paper ”The Program Dependence Graph in a Software Development
engineering, science, and mathematics SO 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors SO 3: an ability to communicate effectively with a range of audiences SO 4: an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts SO 5: an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive
regionalconstraints. We are a land grant state University, the only Ph.D. granting program in BiomedicalEngineering in the state, but are located more than three hours from the nearest major research-intensive medical school and teaching hospitals, which presents logistical and collaborativechallenges. The rural nature of our state leads to unique healthcare considerations and disparitiesthat present unique opportunities for our students to learn.MethodsClinical Observations and Needs Finding is a 1 credit hour course that introduces students to thetechnical, ethical, and professional responsibilities of biomedical engineers during the productdevelopment process. This course is offered in both the fall and spring semesters, withapproximately 30-35 students
development. New York: Atherton, 1966.[31] A. W. Chickering, Education and identity. Jossey-Bass Publishers, 1969.[32] W. G. Perry, Forms of intellectual and ethical development in the college years: a scheme, 1. ed. in Jossey-Bass higher and adult education series. San Francisco, Calif: Jossey- Bass Publishers, 1999.[33] C. M. Beck, B. S. Crittenden, and E. Sullivan, Eds., Moral Education. University of Toronto Press, 1971. doi: 10.3138/9781442656758.[34] C. Pfund et al., “Training Mentors of Clinical and Translational Research Scholars: A Randomized Controlled Trial,” Academic Medicine, vol. 89, no. 5, pp. 774–782, May 2014, doi: 10.1097/ACM.0000000000000218.[35] C. Pfund, A. Byars-Winston, J. Branchaw, S. Hurtado, and K. Eagan
behavioral health translational research training program. Implementation Science, 12(1). Scopus. https://doi.org/10.1186/s13012-017-0621-9Bamonti, P. M., Keelan, C. M., Larson, N., Mentrikoski, J. M., Randall, C. L., Sly, S. K., Travers, R. M., & McNeil, D. W. (2014). Promoting ethical behavior by cultivating a culture of self-care during graduate training: A call to action. Training and Education in Professional Psychology, 8(4), 253– 260. Scopus. https://doi.org/10.1037/tep0000056Bang, K.-S., Lee, I., Kim, S., Lim, C. S., Joh, H.-K., Park, B.-J., & Song, M. K. (2017). The effects of a campus Forest-Walking program on undergraduate and graduate students’ physical and psychological health
critical area that many assume will be more likely to be present within the veteranpopulation than the civilian population. The overall viewpoint by faculty and staff seems tosupport this, but the more experienced faculty (senior instructor and full professor) who are morelikely to have had more contact with veterans over a longer period (time teaching), to includestudents pre-9/11, are more neutral toward the statement of veterans being more likely to havePTSD.When it comes to taking initiative or following orders, it is clear all respondents believe that theveteran is more likely to take initiative than follow orders. Many believe those serving in themilitary are used to following ethical, moral, and safe orders and, so, question why
©American Society for Engineering Education, 2024 Paper ID #42765 Commission Executive Committee and a Program Evaluator for both computer engineering and computer science. Estell is well-known for his significant contributions on streamlining student outcomes assessment processes and has been an invited presenter at the ABET Symposium on multiple occasions. He was named an ABET Fellow in 2021. Estell is also a founding member and current Vice President of The Pledge of the Computing Professional, an organization dedicated to the promotion of ethics in the computing professions. Estell is Professor of Computer Engineering
Academies of Science, Engineering, and Medicine. Gibson contributes to multiple NAE and cross-Academies initiatives, focusing primarily on the Cultural, Ethical, Social, and Environmental Responsibility in Engineering program. Gibson completed her M.S. from the Colorado School of Mines as a member of the inaugural cohort in Humanitarian Engineering and Science (HES). In the HES program, Gibson specialized in Environmental Engineering and conducted research under the NSF-funded ”Responsible Mining, Resilient Communities” project in Colombia. She was named Outstanding Graduate Student in HES. Gibson earned her B.S. in Biological/Agricultural Engineering and minor in Sustainability from the University of Arkansas, along
research instrumentThis study aimed to gain insight into the factors influencing students' decisions to pursuegraduate studies in engineering. We conducted a survey in the Faculty of Engineering at aresearch-based university in Ontario, Canada. The survey sought correlations between students'intersectional identity factors and family background, their perceptions of the Faculty ofEngineering’s resources and support systems, their lived experiences of discrimination,inclusion, equity, and equality, and their decisions to (re)consider graduate degrees. The surveywas created and administered through REDCap, a secure online platform designed for creatingand managing databases and surveys on the web. Ethics approval had been sought from andgranted by
-approved pre- and post-surveys were used to assess the impact of the modules on students’ perceptionof knowledge related to sustainable manufacturing practices in engineering. Their overall improvement inEOP learning objectives was seen across the curriculum, each bar showing a percentage of increasedperception of knowledge in different topic areas (Fig.5). EOP topics such as design thinking related tominimizing environmental and social impact, recognizing local and indigenous practices and use of locallysourced materials was improved by 75% and 38% for first-years and sophomores, respectively. Likewise,recognizing the ethical implications and describing the negative and positive impact of design work onsociety, a skill in social responsibility
Academy of Engineering, Volume 49, Number 4, Winter 2019. 9. C. O. Hilgarth, "Should We Consider Transforming the Definition of Technological and Engineering Literacy,” 2020 ASEE Virtual Annual Conference, 10.18260/1-2—33964, ASEE, 2020. 10. J.A. Stieb, “Understanding Engineering Professionalism: A Reflection on the Rights of Engineers,” Sci Eng Ethics 17, 149–169, 2011. [Online]. Available: https://doi.org/10.1007/s11948-009-9166-x [Last accessed 7 October 2024]. 11. L. Callaway, “The Origin of the Word Engineer: A Linguistic Exploration,” Symbol Genie, September 27, 2023, [Online]. Available: https://symbolgenie.com/origin-word- engineer/ [Last accessed 7 October 2024]. 12. A. Portillo-Blanco, H
understanding that our work could provide a framework fornational-level data efforts.Establishing values a prioriEstablishing the values guiding data work a priori ensures that data practices are ethical,responsible, and aligned with the goals and values of the group [25], [26]. ECEP centers equityin all BPC work across the Alliance. This is also an explicit goal of the CMP project, intended toensure that data is not collected for the sake of gathering numbers but for the purpose ofdiscovering which students do not have access to, or are engaging in, high quality computing.State teams are asked to establish their state’s BPC goals as a condition of membership in theECEP alliance; however, the CMP encourages teams to bring new people to the team
takes his ethical stances into conversations around tough issues to make sure all voices are included. In his professional life, Carr has convened numerous diversity leadership forums in STEM education – bringing together over 100 deans and diversity administrators to talk about underrepresented students persistence, diverse faculty recruitment, and creating inclusive campus climates. Carr has also been a champion for access to opportunities for those from historically oppressed groups. He worked to see outreach efforts exponentially expand to Historically Black Colleges and Universities, Hispanic Serving Institutions, and Tribal Colleges and Universities. His efforts transformed the way the National Science
Paper ID #41539Neurodivergent and Neurotypical Students in a First-Year Engineering DesignCourse: Identity, Self-Efficacy, and ExperiencesDr. Angela R. Bielefeldt, University of Colorado Boulder Angela Bielefeldt is a professor at the University of Colorado Boulder in the Department of Civil, Environmental, and Architectural Engineering (CEAE) and the Director for the Integrated Design Engineering (IDE) program. The IDE program houses both an undergraduate IDE degree accredited under the ABET EAC General criteria and a new PhD degree in Engineering Education. Dr. Bielefeldt conducts research on engineering ethics
overall plays a major role as it can be seen as almost the foundation for communication. If you are aware of aspects such as the culture of one, it can lead to better conversations. No further questions at this time.” (Student 2) “What I learned about myself is that many people may look at myself and think in many different ways. Then I may see myself in a different light. I believe through life everyone has their own trials, culture, ethnics and experiences that all reflect who and how they are today. Being able to understand all perspectives and ethics is valuable to understanding each person's perspective.” (Student 8) “I learned about myself using the three stages of adulthood and
-grant and Hispanic Serving Institutions. Subbian’s educational research is focused on asset-based practices, ethics education, and formation of professional identities.Francesca A L´opez, Penn State University ©American Society for Engineering Education, 2024 Appreciative Inquiry as an Intervention for Equity-Centered Engineering Education Research and Praxis1. IntroductionAppreciative Inquiry (APPI) is an asset-based research approach that has been used in a range ofdomains, including organizational development, public health, and education, to study andfacilitate social change in organizations and communities [1], [2], [3]. APPI is grounded in socialconstructivist theory, which suggests
“ Interaction during exam oral increased my motivation to learn”. 6. Oral exam administrator competency in both behavioral (tone, helpfulness, etc.) and technical aspects (questioning, accuracy of feedback, content knowledge, etc.).The surveys aimed to elicit students’ insight about the impact of oral exams on their learningexperience, how they prepared for the oral exams, and what they felt were the main benefits anddrawbacks of oral exams.To study the impact on academic performance within the class, a fewclasses conducted semi-experiments. There is no rigorous control group. The semi-experimentconducted is elaborated on in a later section. Ethical Approval:Ethical Approval was granted for the study by UC San Diego’s Institutional Review
attributes that graduates must develop during theirtraining in conjunction to the continuous improvement of programs. The attributes addresstechnical skills as well as social, ethical, and organizational skills within engineering practice torespond to the globalized and diversified environments that engineers will need to evolve in [5].Diversity is omnipresent in engineering regarding the sectors where engineers can work, theproblems they can solve, the multiple solutions they can propose, and the variety of peopleinvolved. As demonstrated in many papers [6], diversity in engineering is of great importance tocreate different approaches to problem-solving and better service for everyone.The provincial Quebec’s professional order of engineers defines
. (2015). Establishing an Explanatory Model for Mathematics Identity. Child Development, 86(4), 1048–1062. https://doi.org/10.1111/cdev.12363Fraser, N. (2001). Recognition without Ethics? Theory, Culture & Society, 18(2–3), 21–42. https://doi.org/10.1177/02632760122051760Fraser, N. (2006). Reframing justice in a globalizing world. In T. Lovell (Ed.), (Mis)recognition, social inequality and social justice: Nancy Fraser and Pierre Bourdieu (pp. 17–35). Routledge.Fraser, N. (2008). Scales of Justice: Reimagining Political Space in a Globalizing World. Polity Press. http://ebookcentral.proquest.com/lib/vt/detail.action?docID=1584038Gilgun, J. F. (2019). Deductive Qualitative Analysis and Grounded Theory
, specifically wind and solar energy. The curriculum will provide the necessary skillsto train the next generation of the workforce that will drive West Virginia toward green energy.II. Curriculum Design DescriptionThe curriculum not only imparts a fundamental understanding of wind and solar energy23,24 butalso offers project-based learning experiences25-27. The curriculum includes projects to engageundergraduate students in collaborative and ethical research28. These project-based learning skillsinclude extracting features from the complex vibrations of wind turbines for condition monitoringand dynamic control, modeling wind turbine-generator systems, applying classical control systemsfor maximum power point tracking and regulation for wind
used a mixed methods research or design-based research approach,and two papers were literature reviews. Furthermore, research frameworks utilized by researchpapers focused on coops or cooperative education included: 1. Engineering identity 2. Motivation theory 3. Self-efficacy 4. Mental HealthFinding 2: Learning and Skill Development The second major finding from our review is that there were many descriptive andresearch papers focused on learning, most of which focused on students’ learning and skilldevelopment of professional skills. The most common professional skills discussed included:communication, leadership, engineering ethics, time management, and general workplaceknowledge. In contrast, there was only one
qualities, experience, and beliefs. These include essays on leadership, academicresearch, community service, and personal and professional ethics. Therefore, the data consistsof numerical features such as standardized examination scores and Grade Point Averages (GPA),along with textual data from the essays and letters of recommendation. Applications also collectpersonal information including but not limited to the applicant's name, address, gender, andethnicity. Figure 1 details the potential stages in the admissions pipeline where bias couldemerge and where AI is currently used as per the Intelligent survey [4].In the context of university admissions, features like gender and ethnicity are usually examinedfor bias, as done by Kahlor et al. [13
. ©American Society for Engineering Education, 2025 Change | Makers: What can come next in engineering design?IntroductionThere have been growing calls for engineers and engineering educators to take more completeresponsibility for their role in society as technological developers and technically literatemembers of society, the exclusivity of their practice, and the impact their work has on the worldboth socially and environmentally. These calls appear in various forms including SustainableDevelopment Goals (SDGs) [1], calls to action [2], and academic literature [3-5]. However,change in engineering often comes slowly. While some change has been seen, for example, insome engineering codes of ethics and graduate attributes, others have been
engineering course was part of the broader Discover program designed toprovide high school students access to undergraduate-level education while addressing thegrowing demand for STEM education to inspire future engineers. The course "Introduction toStructural Engineering" ran for 10 weeks, providing high school students from all grades (9th-12th) with a comprehensive foundation in structural engineering principles while fosteringcritical thinking, problem-solving skills, and ethical awareness. Institutional data were collectedon students participating in this program. Student racial and ethnic backgrounds are shown inFig. 1. The engineering course was one of four courses offered in Summer 2024, accounting forapproximately 21% of the total summer
sustainability. As geographer LauraPulido [36] writes, environmental injustice, particularly environmental racism, fundamentallysustains contemporary racial capitalism through land, resources, and human appropriation,commodification, and segregation. Examples of engineering projects maintaining environmentalracism include invasive infrastructures such as oil and gas pipelines [37], corporate entitlementsto pollution such as the petrochemical industry in Chemical Valley, Ontario [38], andurbanization projects of city-building to engineer racist settler colonial landscapes [39].However, these were never discussed during my formal engineering education, not even in myengineering ethics or engineering social impact courses.Additionally, my engineering