, minorities, and persons with disabilities in science and engineering: 2013 (Special Report NSF 13- 304). Arlington, VA: Author. Retrieved from http://www.nsf.gov/statistics/wmpd/[2] Astin, A. W. (1993). What matters in college? Four critical years revisited. San Francisco: Jossey-Bass.[3] Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). Chicago, IL: University of Chicago Press.[4] Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, (Supplement: Organizations and Institutions: Sociological and Economic Approaches to the Analysis of Social Structure), S95-S120.[5] Bourdieu, P. (1986). The forms of capital. In J
this summer program.References[1] "Engage-to-Excel: Producing One Million Additional College Graduates with Degrees in Science,Technology, Engineering, and Mathematics," Executive Office of the President Washington, D.C.2012.[2] C. Vest, "The Image Problem for Engineering," The Bridge vol. 41, pp. 5-11, 2011.[3] S.-A. Allen-Ramdial and A. G. Campbell, "Reimagining the Pipeline Advancing STEM Diversity, Persistence, and Success," Bioscience, vol. 64, pp. 612-618, 2014.[4] NAS, NAE, and IOM, "Rising Above the Gathering Storm," National Academy of Sciences2007.[5] N. Bell, S. Brainard, P. Campbell, M. Coomes, E. Derrick, M. Gomez, et al., "In Pursuit of a Diverse Science, Technology, Engineering, and
controller, the stabilizing controller, and themode controller will be discussed in the next three sections.A. Design of the position controller The pendulum in the system has a length of 2 L 0.335 (m) and its center of mass is located atits geometric center. Thus the natural frequency for small oscillation of the pendulum is given by mgL 3g p 6.628 (rad/s) IA 4Lwhere I A is the mass moment of inertia of the pendulum about point A . To have the rotating armto react to the pendulum’s movements quickly, the closed-loop response of the rotating armshould be considerably
and Mathematics (STEM)outreach is well documented. The methods by which this is accomplished vary and depend onthe specific needs of the student or STEM stakeholder being supported. Further the outreachprovider can vary in size from single high school students doing experiments with youngerstudents, to scientists and engineers (S&E’s) visiting classrooms, and to fortune 500 companiesdonating vast sums of money to build STEM infrastructure.1 Each of these has the potential toinfluence students and impact STEM careers. This paper looks to document what the authorsconsider a large STEM organization. The STEM outreach provider being described is one of theU. S. Army’s research centers, the Armament Research, Development and Engineering Center
Paper ID #16983Challenges for Integrating Engineering into the K-12 Curriculum: Indicatorsof K-12 Teachers’ Propensity to Adopt InnovationDr. Louis Nadelson, Utah State University Louis S. Nadelson is an associate professor and director for the Center for the School of the Future in the Emma Eccles Jones College of Education at Utah State University. He has a BS from Colorado State University, a BA from the Evergreen State College, a MEd from Western Washington University, and a PhD in educational psychology from UNLV. His scholarly interests include all areas of STEM teaching and learning, inservice and preservice teacher
skills.The testing will be done with students from varied backgrounds to assess how individuals studyingin a variety of domains are impacted by their beliefs about knowledge and their own abilities.Subsequently, the researchers will develop interventions that are applicable in existing curricula.Such interventions will be informed by the knowledge that designing and building are correlatedwith a high level of spatial skills.Bibliography1. Martín-Dorta, N., Saorín, S. J., & Contero, M. (2008). Development of a fast remedial course to improve the spatial abilities of engineering students. Journal of Engineering Education, 97(4), 505-513.2. Kell, H., Lubinski, D., Benbow, C., & Steiger, J. (2013). Creativity and technical innovation: Spatial
. c American Society for Engineering Education, 2016 Setting Student Safety Knowledge to PracticeAbstractIn a senior-year unit operations laboratory, students study the fundamental principles andpractical applications of Chemical Engineering through hands-on experiences. The injection ofsafety issues at multiple formative and summative evaluation points has been established topromote meaningful hands-on experiences with safety topics and is presented as a teachingtechnique for others to leverage. This paper describes how resources from the Chemical SafetyBoard (CSB), the American Institute of Chemical Engineers (AICHE) and the University’sEH&S program are interwoven into classroom discussions at the onset of the semester
on Education, Vol. 48, No. 3, pp. 462–471, August 2005. 3. R. W. Ives, B. L. Bonney and D. M. Etter, “Effect of Image Compression on Iris Recognition”, IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, May 17—19, 2005. 4. S. Cotter, “Laboratory Exercises for an Undergraduate Biometric Signal Processing Course”, ASEE Annual Conference and Exposition, Louisville, Kentucky, June 2010. 5. S. Cotter, “Assessing the Impact of a Biometrics Course on Students’ Digital Signal Processing Knowledge”, ASEE Annual Conference and Exposition, Vancouver, Canada, June 2011. 6. S. Cotter and A. Pease, “Incorporating Biometrics Technology into a Sophomore Level
students in Texas. Students accumulate transfer student capital, or knowledge about thetransfer process, at sending institutions (i.e., the place(s) where students begin their degreepaths), receiving institutions (i.e., the final degree-granting institution), and potentially from non-institutional sources. The development of transfer student capital may come from experiencesrelated to learning and study skills, course learning, perceptions of the transfer process, academicadvising and counseling, and experiences with faculty. Upon arriving at the receiving institution,students must adjust to the new environment academically, socially, and psychologically, all ofwhich may influence a variety of educational outcomes. Figure 1
. These figures show the comparison of the various parameterchanges with respect to the blade span at 5ms-1 Effect of Angle of Incidence variation on Effect of Angle of Incidence variation Tangential Force Coefficient CD on Drag force from baseline at 5m/s Normal Force Coefficient CN Lift force from baseline at 5m/s
can be seen that the input from the instructorshelped reshape the format of the workshop between the years but the same underlying principlesexisted: collaboration, interest in student understanding, and material development. With thesecore principles remaining the same across the workshops, we can then compare how theinstructors’ attitudes and beliefs changed throughout this timeframe.Theoretical FramingFor this research, the Concerns Based Adoption Model (CBAM) has been utilized to compareand contrast how the instructors’ beliefs and attitudes towards the innovation changed over time2.CBAM is a well-researched educational model created in the 1970’s ad 1980’s that helps depictthe change process in an educational setting. There are three
student PSVT:R scores, grades,retention, and progress towards graduation.References 1. Guay, R.B. (1977). Purdue Spatial Visualization Test: Rotations. Purdue Research Foundation, West Lafayette, IN. 2. Maier, P. H. (1994). Raeumliches vorstellungsvermoegen. Frankfurt A.M., Berlin, Bern, New York, Paris, Wien: Lang. 3. Barke, H.D. (1993). Chemical education and spatial ability. Journal of Chemical Engineering, 70(12): 968-971. 4. Sorby, S. A. (2000). Spatial abilities and their relationship to effective learning of 3-D modeling software. Engineering Design Graphics Journal, 64(3), 30-35. 5. Eyal, R. & Tendick, F. (2001). Spatial ability and learning the use of an angled laparoscope in a virtual environment
in 201416 APPLIED INNOVATIONCHANGING THE OC STARTUP ECO-SYSTEM APPLIED INNOVATION 17IGNITING, SUPPORTING, S U S TA I N I N G ENTREPRENEURSHIP IN ORANGE COUNTYCREATE SYNERGY ACTIVITIES Startup Weekend, Hackathons, Speaker Series, Mixers and Meetups INVESTMENT SCREENINGS Tech Coast Angels, Golden Seeds, Wharton Angels ENTREPRENEURIAL ORGANIZATION EVENTS OCTANE, TiE, Entrpreneurship Organization (EO), Startup Weekend EDUCATION Lean Startup Seminars, Coding Seminars PARTNERS
tracks and careers for graduate students• Conducting higher education work in ways that include all departmental stakeholders (e.g., first-year lecturers AND tenure-track researchers) 9 DEPARTMENT of ENGINEERING EDUCATIONFor Further Consideration• What educational innovations align with cultural norms in your unit(s)?• What educational innovations can make you a game changer?• How do you attract the right people (i.e., faculty, collaborators) to your unit(s)?• What resources do you need to achieve your vision for educational innovation?• How will you communicate your vision?• How will you recognize and reward people who
1, 2, and 3 relate to ABET 3f, question 4relates to ABET 3h, and questions 5 and 6 relate to both ABET 3i and 3j. The EPSA discussioninstructions are used to provide a framework for the creation of an EPSA scenario. Table 2. EPSA Discussion Instructions Imagine that you are a team of engineers working together for a company or organization on the problem/s raised in the scenario. 1. Identify the primary and secondary problems raised in the scenario. 2. Discuss what your team would need to take into consideration to begin to address the problem. 3. Who are the major stakeholders and what are their perspectives? 4. What are the potential impacts of ways to address the problems raised
asking students to sketch thermodynamic cycles on a temperature-entropy T-s or pressure-volume P-v chart. The typical analytical steps involving propertyretrieval followed by depiction on a property chart is disjointed and reversed. If property valuesare acquired directly from a property chart, the process is integrated into a single intuitive stepthat promotes deeper understanding. While printed charts exist, they can be challenging to readconsidering a single point must supply up to six discrete values (namely P, T, v, u, h, and s).Instead, an interactive property chart that displays properties values for user-identified states canbe highly effective visual aid. This was the inspiration behind the Clausius app. Clausius allowsusers to simply
UNCLASSIFIED Open Campus Enabling a Strong Collaboration Ecosystem • Partners include international and domestic: – Academia – Industry, Small Business – Government, Military • Research efforts align with partner research interests and ARL S&T Campaigns • International collaborations enabled by updated policies, layered security, dedicated facilities & network access • Entrepreneurial activities enabled • Efficient, effective, and agile research system created through collaboration • Responds to national security challenges of the 21st CenturyUNCLASSIFIED 4 The Nation’s Premier Laboratory for Land Forces
/OSHA inspections, and legal fillings.• Chancellor• Vice Chancellor for Research• Associate Vice Chancellor for Research – Laboratory Safety• UC Center for Laboratory Safety• Laboratory Safety Committee• Environment, Health and Safety• Departments• Faculty• Research Staff• Graduate Students and Undergraduate StudentsChanges top to bottom were required to change the safety culture UCLA Response: Chancellor’s Office• Chancellor made safety a high priority on campus• Chancellor has allocated financial resources (mainly to EH&S) to meet increased safety demands• Vice Chancellor for Research charged with follow-through• Associate Vice Chancellor for Research – Laboratory Safety - new position to
. A Report to the Nuffield Foundation. London1966 LeBold, W. K., Perrucci, R. and Howland, Reported that in the 1930’s in the US three W. E., 'The Engineer in Industry and fifths of engineers under 40 were occupied Government," Journal of Engineering with administrative rather than technical Education, vol. 56, no. 7, March 1966, pp. work
University of Michigan’s Rackham Merit Fellows program, theNational Science Foundation’s Graduate Research Fellowship program, the National ScienceFoundation’s Research Initiation Grants in Engineering Education, and the University ofMichigan Center for Research on Learning and Teaching’s Investigating Student Learning Grant.The study team thanks the students who volunteered as study participants.Bibliography1. Simon, H. A. The Sciences of the Artificial. (MIT Press, 1996).2. Dym, C., Agogino, A., Eris, O., Frey, D. & Leifer, L. Engineering design thinking, teaching, and learning. J. Eng. Educ. 94, 103–120 (2005).3. Kujala, S. User involvement: a review of the benefits and challenges. Behav. Inf. Technol. 22, 1 – 16 (2003).4
The AIMS2(HSI-STEM Grant)CSU Northridge, Glendale CC, College of the Canyons JD 1568 2 PM – 4PM Nov 14, 2013 S. K. Ramesh, Dean, College of Engineering and Computer Science, and PI of the HSI-STEM Grant EDI Panel on Diversity and 03/31/16 1 Inclusion •AIMS2 Cohort: Photo Courtesy Armando Cohort 3 Cohort
of the dough was measured as a function of time or suspendedmass to determine material properties of gluten. The learning objectives for thisexperiment are listed in Table 1, and the assessment questions are listed in Table 2.While this experiment may not be applicable to the traditional unit operations course,material characterization is an important concept for chemical engineers. Anunderstanding of stress and strain may also help students understand viscometeroperation as well. Figure 1. Apparatus used for testing mechanical properties. The gluten is connected tothe S-hook and the hanging tray. As more washers are added to the tray, the glutenstretches. Its length is
., Brooke, C., Mickelson, S., and Freeman, S. (2009). Assessing student work to support curriculum development: An engineering case study. Journal of Learning Communities Research, 3(3), Dec 2008/Jan 2009, 47-62. 5. Richter, D.M. and Paretti, M.C. (2009). Identifying barriers to and outcomes of interdisciplinarity in the engineering classroom. European Journal of Engineering Education, 34(1), 29-45. 6. Seidel, V.P. and Fixson, S.K. (2013). Adopting design thinking in novice multidisciplinary teams: The application and limits of design methods and reflexive practices. Journal of Product Innovation and Management, 30(S1), 19-33. 7. Adams, R.S. and Felder, R.M. (2008). Reframing professional development: A systems approach to preparing
Treuren is an Associate Professor in the Department of Engineering at Baylor University. He received his B. S. in Aeronautical Engineering from the USAF Academy in Colorado Springs, Colorado and his M. S. in Engineering from Princeton University in Princeton, New Jersey. After serving as USAF pilot in KC-135 and KC-10 aircraft, he completed his DPhil in Engineering Sciences at the University of Oxford, United Kingdom and returned to the USAF Academy to teach heat transfer and propulsion systems. At Baylor University, he teaches courses in laboratory techniques, fluid mechanics, energy systems, and propulsion systems, as well as freshman engineering. Research interests include renewable energy to include small wind
presenting the total externalwork and total strain energy equations beginning first with a single load P applied to a planartruss with one load sequence. Then loads P and Q are applied using two load sequences in whichthe load Q is applied at the location and in the direction of the desired displacement. From thisbasis of understanding, an additional load S is included in both load sequences to discuss itsinfluence on the displacement expression. This leads to a general understanding of the influencethat any number of additional loads would have on the displacement expression, and that theeffect of the load Q remains unchanged as these loads are applied. It then becomes evident thatBarry T. Rossonthe desired displacement due to all the applied loads
S-STEM project “HumanConnect” is aligned withthe Humanitarian Engineering Scholars (HES) program in the College of Engineering andsupports scholarships of up to 4 full years for academically talented students who demonstratefinancial need, enabling them to enter the STEM workforce or graduate school following STEMdegree completion. Our two main goals are to 1) Positively impact the retention and graduationof Engineering students with financial need and 2) Improve academic performance relative to acontrol group (selected from another scholars’ community, Green Engineering Scholars or GES).In the first year of the award (2013-14), scholarships were granted to a first cohort of 15 students(11 first year and 4 second year). In the second year
systems, and other topics. The projects give students an opportunity to design, analyze,build, integrate, and test unmanned aerial systems, both in simulation and flights. The projectsalso give students experience working with faculty member(s) and help well prepare them intheir oral and written communication skills. Lack of strong written and oral communications hasbeen identified as deficiency in STEM education, resulting in poor success rate. The studentsfrom several departments including Aerospace Engineering, Electrical & Computer Engineering,and Computer Science Departments work on these projects in an interdisciplinary environment.The goal is to involve the students in these projects for an extended period of time, starting withthe
ics s .H s er io h ue rit y al y or ds th rid io
a study to examine the factors that impact theproduction of African American Ph.D.’s in engineering, as well as those factors that affectthe pathway to tenured faculty positions in engineering. Their findings have highlightedthe need to discuss race and gender and its impact on developing a more diverseengineering workforce [1-4].References[1] E. O. McGee, W. H. Robinson, L. C. Bentley, and S. L. Houston II, "Diversity stalled: Explorations into the stagnant numbers of African American engineering faculty," in ASEE Annual Conference and Exposition, Seattle, WA, 2015.[2] W. H. Robinson, E. O. McGee, L. C. Bentley, S. L. Houston II, P. K. Botchway, and R. Roy, "Racial and gendered experiences that dissuade a