UniversityMr. Matthew R. Marsteller, Carnegie Mellon University Mr.Marsteller is Principal Librarian, Engineering & Science at Carnegie Mellon University. Prior to this position, he was Head of the Science Libraries at Carnegie Mellon University from 2006 through 2014. He has also served as the Physics and Math Librarian at Carnegie Mellon from 1999 through 2006. Earlier in his career, he served as the Library Team Leader for the National Energy Technology Laboratory Library in Morgantown, West Virginia and as an Assistant Science Librarian at the University of South Carolina. He also served in the United States Navy as a surface ship nuclear propulsion plant operator aboard the USS Mississippi. He is currently a United
assess their effectiveness.Inquiry-based Hands-on Experiments in Neuroscience The focus of this project is to expand the opportunities available to actively engagestudents in hands-on learning and foster an entrepreneurial minded learning environment in aneuroscience laboratory course. This project is a seed grant to pilot the activities this fall andassess the effectiveness of the interventions being proposed in a neuroscience course and in anintroductory engineering course as well.Lessons Learned and Moving Forward Prior to the Teaching Institute, faculty in STEM fields outside of engineering did nottypically associate EML as being a viable tool worth integrating into their classroom. However,they saw significant value in using
University (1995), and he earned his M.S. (1998) in environmental health engineering and his Ph.D. (2002) from the University of Illinois, Urbana-Champaign. He has completed postgraduate coursework in Microbial Ecology from the Marine Biology Laboratory, Environmental Health from the University of Cincinnati, Public Health from The Johns Hopkins University, and Public Administration from Indiana University, Bloomington. Oerther is a licensed Professional Engineer (PE) in DC, MO, and OH. He is Board Certified in Envi- ronmental Engineering (BCEE) by the American Academy of Environmental Engineers and Scientist (AAEES), registered as a Chartered Engineer (CEng) by the U.K. Engineering Council, recognized as a Diplomate
School of Mines Alyssa Miranda Boll is a graduating senior at the Colorado School of Mines and is active in professional organizations including the Institute of Electrical and Electronics Engineers, the Society of Women En- gineers, and Out in Science, Technology, Engineering, and Mathematics. Her technical studies focus on digital circuits and computer engineering. Her prior research experience includes internships at the National Renewable Energy Laboratory and the National Center for Atmospheric Research. She is pas- sionate about intersectionality and advocacy of underrepresented groups in STEM and has participated in research of sociotechnical thinking in undergraduate engineering curriculum.Prof. Jenifer
initiatives, course redesign, partnerships, impact on institutional culture,and impact on change beyond campus [17]. PROMISE: Maryland’s Alliance for GraduateEducation and the Professoriate is another noteworthy program. This program makes efforts onall levels to promote URM scholars from undergraduate degrees to doctoral degrees to facultypositions. The program recommends the professional development of graduate students thatincludes a critical mass of URMs and extends beyond experiences that are provided by coursesand research laboratories [28]. The program believes that all of their graduate students shouldhave accessible and functioning support systems to help them develop professional skills,network, get career advice, and strengthen their
Joint Training Model for Leading Talents in Engineering Technology athome and abroad”, and proposed to build an international cooperation and exchange patternin the next five years. In this context, the chemical engineering and technology programdecided to apply for the ABET accreditation, and explore a new path for theinternationalization of engineering education for domestic colleges and universities. In theprocess of preparing for the ABET accreditation, the program reorganized and rectifiedaspects such as the orientation of schooling philosophy, the construction of curriculumsystem, and the safety requirements of laboratory in accordance with the requirements of theABET accreditation. In November 2013, after more than a year of preparation
Science Foundation (NSF), Office of Naval Research (ONR), United States Navy, NASA Jet Propulsion Laboratory (JPL)] and industry [Blue Origin, Lockheed Martin, Sun Nuclear, Northrop Grumman, Rockwell Collins, PTC, Alstom]. Dr. Morkos received his Ph.D. from Clemson University. In 2014, he was awarded the ASME CIE Dis- sertation of the year award for his doctoral research. He graduated with his B.S. and M.S in Mechanical Engineering in 2006 and 2008 from Clemson University and has worked on multiple sponsored projects funded by partners such as NASA, Michelin, and BMW. His past work experience include working at the BMW Information Technology Research Center (ITRC) as a Research Associate and Robert Bosch
how much students aremotivated to learn beyond the classroom/laboratory because of ease of access, and how muchdoes this impact innovation in project work (similar to how easy access to 3D Printing hasspurred innovation). Another area of interest for future work is the impact of integrated VirtualReality capabilities that come with 3DExperience on learning and project work formanufacturing oriented topics such as Robotics and Ergonomics.ConclusionIn conclusion, it seems unavoidable that engineering educators must embrace some form ofcloud-based CAx+P as the fourth industrial revolution unfolds. These systems are makingfeasible the use of PLM capabilities that have until now presented major implementationresource challenges to smaller
SMEs,” International Journal of Technology Management, vol. 22, no. 1-3, pp. 28-55, 2001.[7] C. F. M. M. a. O. S. Karin Ahlbäck, “The 5 Trademarks of Agile Organizations,” McKinsey Global Survey Results: How to create an agile organization, 2017.[8] M. F. R. Kets de Vries and K. Korotov, “Creating Transformational Executive Education Programs,” Academy of Management Learning & Education, vol. 6, no. 3, pp. 375-387, 2007.[9] K. Korotov, Identity laboratories, INSEAD PhD Dissertation, 2005.[10] P. A. Dover, S. Manwani and D. Munn, “Creating learning solutions for executive education programs,” The International Journal of Management Education, vol. 16, pp. 80- 91, 2018.[11] R. M. Gagne, W. W. Wager, K. C. Goals and J. M
associate professor of chemistry at Tuskegee University where she specializes in physical chemistry and computational chemistry. Her research interests have ranged from calculating transition states of small molecule reactions in solution to molecular dynamics of polymers. She has worked on two American Chemical Society Physical Chemistry Exam Committees and is an active participant in the Process Oriented Guided Inquiry Learning Physical Chemistry Laboratory (POGIL-PCL) community.Carol A Handwerker Carol Handwerker is the Reinhardt Schuhmann, Jr. Professor of Materials Engineering at Purdue Univer- sity. c American Society for Engineering Education, 2020 Critical incident
University, and the School of Fisheries and Ocean Sciences at the University of Alaska, Fairbanks.Dr. Angela Harris, North Carolina State University Dr. Angela Harris joined the faculty at NCSU in August 2018 as an Assistant Professor. Harris is a member of the Global Water, Sanitation, and Hygiene (Global WaSH) cluster in the Chancellor’s Fac- ulty Excellence Program. Her research seeks to better characterize human exposure pathways of fecal contamination and develop methods to interrupt pathogen transmission to protect human health. Harris is engaged in computational and laboratory investigations in addition to conducting field work in inter- national locations (prior work includes projects in Tanzania, Kenya, and
the Creativity! channel on the CE483 Teams site for more details about developing your creative abilities.”Two slides were included in the first lesson to facilitate discussion about creativity and itsimportance in engineering and do one short exercise to get a sense for the type of activitiesthey should expect during the semester. Note that all students had taken a required civilengineering course and laboratory experience in the same classroom during the previoussemester. The slides are shown in Figure 1. Figure 1 Slides Used in Lesson 1 to Discuss CreativityEach of the eight homework assignments during the semester included one 10-point exercise (outof 80-100 points total) intended to take 10-15 minutes to complete
universities with smaller programs that do not havestructural engineering laboratories. SLU is a large, private, four-year, highly residentialuniversity with doctoral programs and high research activity (R2); Rose-Hulman is a small,private, four-year, highly residential university without doctoral programs, classified as specialfocus four-year: engineering schools. Neither institution had a structural engineering laboratoryprior to this implementation, but both focus heavily on the undergraduate learning experience.The project utilizes the Modular Strong-block Testing System [3] when needed to test larger-scale specimens. While a full structural engineering lab would be ideal to conduct such tests, theself-contained system provides an economical
and technology-in-use as a reflection on, and an influence on social morals and social ethics.Mr. Lynn Catlin P.E., Boise State UniversityDr. Harold Ackler, Boise State University Dr. Harold Ackler is a Clinical Assistant Professor in the Micron School of Materials Science and En- gineering at Boise State University. He teaches advanced undergraduate laboratory courses and manages the senior capstone program in the Micron School. He received BS and MS degrees from the University of California at Berkeley and his PhD degree from the Massachusetts Institute of Technology (1997), all in Materials Science and Engineering. He has over 13 years of experience working in industry where he learned how important hands-on
, Learning, and Culture. In her research, she is interested in the assessing STEM interventions on student outcomes, measuring academic growth, and evaluating the impact of curricular change.Dr. Julia Daisy Fraustino, West Virginia University Dr. Fraustino is an assistant professor of strategic communication and director of the Public Interest Communication Research Laboratory in the Media Innovation Center of the Reed College of Media at West Virginia University. She is a research affiliate in the risk communication and resilience portfolio at the National Consortium for the Study of Terrorism and Responses to Terrorism (START), a DHS Emeritus Center of Excellence. She specializes in crisis, emergency, and risk
dissertation research involves the development of synthetic and natural-synthetic hybrid biomaterials for molecular recognition and targeted drug delivery applications. Additionally, John is interested in the development of new instructional methods tools to both teach Biomedical Engineering in the classroom and laboratory and assess the efficacy of such strategies.Dr. K. R. Diller, University of Texas, Austin Kenneth R. Diller is a Professor of Biomedical and Mechanical Engineering and the Robert M. and Prudie Leibrock Professor in Engineering at the University of Texas at Austin. He has been on the faculty at UT for 45 years. He was the founding Chairman of the Department of Biomedical Engineering at UT Austin, UT
Laboratory. He has a bachelor’s degree in civil engineering from Carnegie-Mellon University and a master’s degree in civil engineering with an emphasis in regional planning from Northwestern University. Wayne is a frequent speaker and author on continuing education for engineers, and is a member of the College of Engineering’s Education Innovation Committee. For more information about UW-Madison’s Master of Engineering Management degree see https://epd.wisc.edu/online- degree/master-of-engineering-management/Dr. Jeffrey S. Russell, University of Wisconsin, Madison Dr. Jeffrey S. Russell is the Vice Provost for Lifelong Learning and Dean of the Division of Continuing Studies at the University of Wisconsin-Madison. In his
as Head of the Department of Computer Science at Virginia Tech, and retired on September 1, 2016. Dr. Ryder served on the faculty of Rutgers from 1982-2008. She also worked in the 1970s at AT&T Bell Laboratories in Murray Hill, NJ. Dr. Ryder’s research interests on static/dynamic program analyses for object-oriented and dynamic programming languages and systems, focus on usage in practical software tools for ensuring the quality and security of industrial-strength applications. Dr. Ryder became a Fellow of the ACM in 1998, and received the ACM SIGSOFT Influential Educa- tor Award (2015), the Virginia AAUW Woman of Achievement Award (2014), and the ACM President’s Award (2008). She received a Rutgers School of
added as an extradimension?Pragmatism is an overall way of thinking, one that Dewey used effectively in spelling outhow education and democracy work together, and for taking action in education. Dewey’spragmatism produced concrete results such as the laboratory schools, which pioneered theprogressive early education movement, and emphasizes teaching principles in contextthrough practice.Pragmatism and the ethic of care can be translated into engineering practice, and includedin the way we teach engineering and science in the early part of the curriculum forexample. Students should be made aware that science is dynamic, and that knowledgechanges. We do not normally convey this when teaching science. The pragmatic waywould say that rather than
-developed an orientation course for first-semester students in the major. She continually looks for ways to enhance student learning, development and career preparedness.Kathryn Kirsch, Pennsylvania State University Kathryn is a post-doctoral researcher in the Steady Thermal Aero Research Turbine (START) Laboratory at Penn State University. In addition to her technical research, Kathryn has been active in the Mechanical Engineering Undergraduate Department, working as the undergraduate curriculum advisor and developing content for undergraduate advising courses.Dr. Eric R Marsh, Pennsylvania State University, University Park Associate Head for Undergraduate Programs and Arthur L Glenn Professor of Engineering EducationDr
Shiley-Marcos School of Engineering at the University of San Diego. She received her BS, MS, and PhD in Mechanical Engineering from the University of California at San Diego. She has an extensive background in industrial and government research from her years working at Hamilton Sundstrand and then Sandia National Laboratories. Her research interests are in numerical methods applied to solid and fluid mechanics, thermal hydraulics, reactor safety and uncertainty quantification applications. c American Society for Engineering Education, 2018 Introducing Social Relevance and Global Context into the Introduction to Heat Transfer CourseAbstractLeaders, researchers
= pathlength (distance that light travels through the sample). Note: This equation is only accuratewhen the absorbance of the sample is between 0.1-1.0. The first spectrophotometer that could effectively measure transmittance (and absorbance)was invented by Arnold Beckman of National Technical Laboratories in 1940. Beckman’s initialdesign used a glass prism to split light into various wavelengths and a vacuum tube photocell tomeasure transmittance, but later models used more reliable quartz prisms. Modern spectrophotometers use essentially the same design, but with a few key changes(see Figure 6). The light source is typically a halogen light bulb, which emits wavelength in thevisible range ( = 300-700 nm) and near-infrared, but a
; Inclusion. He is investigating university-community engagement as empow- erment settings and working to further the research agenda of the global community of practice within Diversity and Inclusion in Engineering Education. His research laboratory aims to support an inclu- sive, global pipeline of STEM talent and to unify the needs of the engineering education stakeholders in order for engineering education to more accurately reflect societal needs. Diversity and inclusion, univer- sity/community engagement, informal learning, action research, and student led initiatives fall within the scope of his academic endeavors. c American Society for Engineering Education, 2018 A pilot study
Bell Laboratories, Siemens Corporate Research, and AVL, including microcode for a graphics processor, real-time medical image processing, and data acquisition and communications protocols for semiconductor process control. Since 1997, he has been a faculty member in Rochester Institute of Technology’s Department of Software En- gineering including the position of Department Chair. His professional interests are in the engineering of software for real-time and embedded systems. He was a recipient of RIT’s 2010 Eisenhart Award for Outstanding Teaching.Mr. Bryan Basham, Software Alchemy (with RIT) I am a Software Consultant, Developer, Application Architect and Educator with over 40 years of software development
clearly and rigorously identify adaptive expertise in practice.Evaluations of adaptive expertise have taken several approaches: the direct observation of theperformance of adaptive expertise, either in authentic or laboratory conditions; interview andreflection protocols designed to elicit self-reports about responses to complex environments; andsurvey instruments, in which respondents rate their agreement with statements pertaining toeither attributes related to adaptive expertise or the prevalence of actions characteristic of theperformance of adaptive expertise [9].Across all of these studies, different sub-components of adaptive expertise have emerged. Whilethere is broad consensus that adaptive expertise is built on top of subject expertise