are not well-studied in the engineering education literature.In related work, in order to facilitate the integration of ethics into the engineering curriculum,Nair and Bulleit [13] propose identifying ethical philosophies that are compatible with theexisting “engineering way of thinking” (EWT). Though we see engineering ethics as related butdistinct from our interests in sociotechnical integration, we look to this work as an example ofbringing together historically disparate considerations such as ethics and the technical side ofengineering work.Engineering ways of thinking were also analyzed in a case study by Godfrey on engineeringculture in an Australian university that had previously undergone a curriculum and culturaloverhaul. Godfrey
laboratory curriculum should be a balance of expository and inquiry instruction and,if possible, an introduction to independent research techniques (Svinicki and McKeachie, 2014;Tomasik, et al. 2013; Galloway, et al., 2016). Fourth, the laboratory program must be feasiblewithin available resources, which included time, costs, instrumentation, physical facilities, andsupport personnel (Larsen, et al. 2013). Fifth, we developed the laboratory curriculum topromote a more complex affective learning environment. Galloway et al. showed that accessingfeelings beyond interest about the laboratory experience encourages students to make aconscious choice to more actively participate in the laboratory learning environment (2016).2. Course Description and
experiments, the wiring of sensors to amicrocontroller board and the open source program coding were all valuable learningexperience to students. As a result of the success of this activity, in supporting STEMeducation, made the local government initiate the process to include Space Education aspart of the curriculum initiatives. Keywords—HAB, STEM, Space Education, Open Source Hardware, Low Cost)I. INTRODUCTION In spite of the early creation of the Paraguayan Space Agency by congress in 2014, Law5151/14, [1] it didn’t start office up until 2017 by executive order Act 6466/17 and Act 7364/17.During this period of time, by initiative of academia, i.e. Facultad Politecnica UniversidadNacional de Asuncion (FPUNA), an attempt to conduct a near
discuss the implications ofPLM systems in classroom dynamics, curriculum and grading.IntroductionThis paper builds on the idea that the implementation of a Product Lifecycle Management (PLM)system in an introductory level freshman course can provide students with key competencies tosucceed in today’s complex design engineering environments. Being exposed to PLM systemsearly and in the context of entry level modeling courses allows students to become familiar withPLM concepts and how PLM systems are an integral part of modern design processes. Studentsentering the workforce will have a firm understanding of the various stages and changes aproduct goes through during its lifecycle and how PLM and CAD are not mutually exclusive, butcomplementary to
. Contemporaneously, this lab has also hosted an NSF/REU sitesince 2011 [1, 3, 13].Professional Development ReviewProfessional development (PD) is required of many teachers. Teacher PD has been shown toimprove student achievement in science [14], and PD is considered imperative to the realizationof standards in curriculum [15]. Teachers are typically required to earn a certain number ofcontinuing education credits (CEUs) as part of their work contract. CEUs may be earned anumber of ways, including workshops and courses at nearby institutions, however this can beproblematic. One-shot workshops designed for teacher enrichment can be useful, howeverlonger-term PD programs are required to support standards which reach all students [15]. Thelimitations of the
Paper ID #24757Developing a Request for Qualifications Activity to Integrate ConstructionTopics at the Sophomore LevelDr. Luciana Debs, Purdue University Luciana Debs, is an Assistant Professor of Construction Management in the School Construction Manage- ment Technology at Purdue University. She received her PhD from Purdue University Main Campus. Her previous degrees include a MS from the Technical Research Institute of Sao Paulo (IPT-SP), and BArch from the University of S˜ao Paulo (USP), in Sao Paulo, Brazil. Prior to her current position she worked in design coordination in construction and real estate development
activities in assisting theprogram, the university, and the students. Their memberships comprise of large and small firms,owners; state agencies; suppliers; associations; graduates current student; faculty; an architect, andeven an attorney & high school counselor. The board has over 20 members which may beconsidered large, but they operate like a fine clock piece. The member’s makeup is unique butnecessary for the board to achieve its mission.Some of the board’s activities include curriculum review; accreditation, financial support; diversify;cutting edge technology; outreach; networking; career support; and senior exit interviews. Each ofthese are a critical part of the program’s timepiece.This partnership has resulted in an excellent
launched the Technology, Research, and Communication (TRAC) Writing Fellows Program, which has grown into an organization of 80 discipline-based peer writing tutors who, in total, work with more than 1,300 students at Lehigh each semester. His research interests include topics in writing across the curriculum, composition theory, argument theory, and peer learning with a special focus on writing fellows programs.Dr. Siddha Pimputkar, Lehigh University c American Society for Engineering Education, 2019WIP: Integration of Peer Communication Fellows into Introductory Materials Science CoursesAbstractThis study is a work in progress. The purpose of this project was to enhance the
Paper ID #26165TQM Applied to an Educational OrganizationDr. Mysore Narayanan, Miami University DR. MYSORE NARAYANAN obtained his Ph.D. from the University of Liverpool, England in the area of Electrical and Electronic Engineering. He joined Miami University in 1980 and teaches a wide variety of electrical, electronic and mechanical engineering courses. He has been invited to contribute articles to several encyclopedias and has published and presented dozens of papers at local, regional , national and international conferences. He has also designed, developed, organized and chaired several conferences for Miami
students within COSE, which supplied the funding for this study.BackgroundTheoretical FrameworkThe framework of Astin’s, Swail’s, and Tinto’s models are, in their simplest interpretation, aboutstudent involvement in their chosen college and program. Astin’s involvement model shows thatthe academic performance of a student is directly correlated to their involvement level within theircollege or program [2, 3]. Tinto theorizes that poor integration into the many facets of college life,including academically and socially, is an early indication of a student having a higher risk ofdropping out [4-6]. Finally, Swail et al.’s analysis of minority retention in institutions of higherlearning yields the Geometric Model of Student Persistence and
Ruiz , ASPIRES Program Julissa Rico Ruiz is first generation student pursuing a Civil Engineering major, planning on specializ- ing on Structural Engineering. Having taken several foundational Engineering courses, she was able to integrate what she learned on this research.Karina ReynaMr. Moises Arturo Vieyra, Canada College I am an undergraduate student at Canada College ready to transfer to a 4 year University. My future plan is to get my bachelors degree in civil engineering and work my way to creating my own company. c American Society for Engineering Education, 2019 Integrating Collapse Simulation of Building Structures into Internship Experiences for Community College
they may be able to trackthe impact of the integrated project as students’ progress through the curriculum.References 1 Striebig, B., Ogundipe, A., and Morton, S. 2014. Lessons in implementing sustainability courses into the engineering curriculum. 121st ASEE Annual Conference & Exposition, June 15-18th, 2014, Indianapolis, IN. 2 Striebig, B. 2016. Applying US EPA sustainability criteria to capstone design. Engineering for Sustainability. ASEE SE Section Annual Conference, March 13-15, 2016. Tuscaloosa, AL. 3 Striebig, B. and Morton, S. 2016. A Sustainability Indicators Based Curriculum. Engineering for Sustainability. ASEE SE Section Annual Conference, March 13-15, 2016. Tuscaloosa, AL. 4 Striebig
. His research interests include wireless sensor networks, distributed systems, computer security, and most recently, software quality met- rics. Dr. Omari is involved in computer science curriculum development and computing-related program accreditation. c American Society for Engineering Education, 2019 Designing an ABET- Ready Computer Engineering Program in a Medium-Sized Liberal Arts CollegeAbstractWhile most engineering students aspire to graduate from a top engineering university, manychoose to attend small to mid-size liberal arts colleges for various reasons, including financial,location and learning needs. It is essential that these engineering students are given
University (USA) and was 2014-15 Fulbright Scholar in Engineering Education at Dublin Institute of Technology (Ireland).Dr. Cheryl A. Bodnar, Rowan University Cheryl A. Bodnar, Ph.D., CTDP is an Assistant Professor in the Department of Experiential Engineering Education at Rowan University. Dr. Bodnar’s research interests relate to the incorporation of active learn- ing techniques in undergraduate classes as well as integration of innovation and entrepreneurship into the engineering curriculum. In particular, she is interested in the impact that these tools can have on student perception of the classroom environment, motivation and learning outcomes. She obtained her certifica- tion as a Training and Development
senior systems engineer at General Dynamics C4 Systems. She is now part of the freshman engineering education team in the Ira A. Fulton Schools of Engineering at Arizona State Uni- versity. Currently, she focuses on enhancing the curriculum for the freshman engineering program to incorporate industry standards into hands-on design projects. She is an instructor for the Introduction to Engineering program, Engineering Transfer Success program, Engineering Futures program, and the Electrical Engineering department at ASU. She is a multi-year winner of the Fulton Top 5% Teaching Award and Badass Women of ASU. Her philosophy boasts incorporating large scale systems engineering techniques into collegiate engineering
whilestudents completed an engineering design challenge and attempted to apply epistemic frames toassess student ways of being an engineer.Creation of Engineering Epistemic Frame for K-12 Engineering (EEFK12) The engineering epistemic frame for K-12 (EEFK12) was created by synthesizing localframeworks[9], higher education goals, policy directives[33, 34], and relevant literature. Thedevelopment of the frame occurred using a similar process used by Chesler and colleagues [32]in the development of an online professional practice simulator for freshman undergraduates andArastoopour and colleagues’ virtual internship[29] where they used ABET Criterion 3 as afoundation. Local standards from Massachusetts were used because the curriculum for thesummer
curriculum for our Engineering programs. Here is aflowchart of the sequence of courses explaining relations of these courses with other coreEngineering courses (Figure 1): Figure 1: Flowchart of courses with the newly designed Physics and Engineering Math courses (highlighted in yellow) along with their relations with some core Engineering courses. The arrows show the prerequisite structure.In the first semester, a declared Engineering major is advised to register for Introductory Mathfor Engineering Applications I (ENGR 121L) and Physics for Engineers I (ENGR 215) coursesalong with other Freshman Engineering and General Education courses. ENGR 121L is offeredas an eight-week course during the first half
time at Rowan and UMass, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum. c American Society for Engineering Education, 2019 Understanding the gap between communication in the classroom and communication during an industrial internshipAbstractWhile it
teaching strategies for K-12 STEM educators integrating engineering design and the development of engineering skills of K-12 learners. c American Society for Engineering Education, 2019 Becoming in Action: An Autoethnography of My Professional Identity Development During the Rising Engineering Education Faculty Experience (Research)AbstractOn the road to obtaining a graduate degree in engineering education, graduate students havelimited opportunities to develop a comprehensive toolbox required for a future career as anengineering education faculty member. The current professional development trajectory focuseson acquiring technical knowledge through required courses and research
documented various aspects of the program over its first 9 years. The purpose of thispaper is to describe the current state of the integrated teaching and learning strategies that theprogram uses to facilitate engineering design learning with an entrepreneurial mindset in a PBLmodel.Awareness of the IRE program has increased recently with the program being recognized as theABET 2017 Innovation award winner and in the top ten emerging leaders in engineeringeducation in the “Global state of the art in engineering education” report by Dr. Ruth Grahamreleased in 2018 [1].Purpose of researchThe purpose of this paper is to describe how the Iron Range Engineering (IRE) program leadsstudent engineers to ”become the engineer they want to be” by working with
studies investigated curriculum integration where softskills teaching is included in most of the academic program courses.27,28,29 Integrated Teaching FrameworkCurriculum integration was practiced and proven as an effective approach to teachinginterdisciplinary skills.27,28,29 The integration was considered as a common theme in a set ofcourses, or as an application of knowledge from one course to teach another course in anacademic program, or as an industry based projects such as internship or capstone projects. Theapplication of industry teaching approaches used to train employees versus teaching in anacademic setting was also described in the literature.30,31 In this research we propose an integration as a
theimportance of engineering ethics. Educators have begun incorporating engineering ethics incurricula in a variety of formats: as a component in introductory or capstone courses, a centralelement in stand-alone courses, and/or through deliberate integration across curriculum [1], [2].The main approaches in teaching of ethics continue to use case studies or case-based discussionssupplemented by moral theory and/or professional codes of ethics. Service learning is anotherapproach that has increasingly been used and reported as an effective pedagogical strategy ininstruction of engineering ethics [3]-[5]. In the U.S., the main driver in incorporating ethics inengineering curriculum was the changes in ABET engineering criteria requirements on
ways. LD #5 Social and Emotional Engagement: working in teams, teaching and helping one another, expressing pride and ownership, documenting/sharing ideas with others.Early efforts to understand student’s experiences with the tinkering and prototyping activitiesrelied on written student reflection and direct feedback. Lecture handouts were an integral part ofthe curriculum, providing opportunities for students to reflect on their communication, teamworkand design learning. Evaluation on an end of quarter in-class student reflection assignmentintended to help prepare students for their final design showcase presentation provided valuableinsight into preliminary outcomes of the “tinkering” teaching and learning approach. Of thefreshman
group. Adding unexpected ethical twists requires further innovation.Background This paper builds on a paper presented at the 2011 Vancouver ASEE conference entitled A FirstCourse to Expose Disparate Students to the BmE Field.1 This present paper expands on animportant didactic element of that course, namely an emphasis on story writing and reflection,but with an added ethics twist. This inclusion arose from the author’s participation in a Consor-tium to Promote Reflection in Engineering Education (CPREE) workshop at the 2016 ASEEConference in New Orleans.2 That participation led to the publication of a short CPREE activityguide on the topic of story writing as a tool for enhancing engineering education.3 Story writingwas also employed as a core
the software design project also plays a role. Students who demonstrated excellentcommunication skills in addition to technical and programming skills are best fit to mentorfreshman. The time requirement is selected such that the mentors are thorough in the content.Since the First-Year Engineering curriculum is revised continuously to improve the quality andrigor, it is critical to have mentors who know the material well. Once the prospective candidatesfor mentoring are determined, an email invitation is sent to all the qualified students prior to thebeginning of the semester. Interested students respond back with their interests and availabilityand are then hired as peer mentors. Usually, the mentors are compensated for the mentoringwork
great asset to the institution, however, the lack of effectiveways of integrating faculty into the college has presented a significant barrier to the establishmentof an inclusive and supportive faculty community. In addition, in a unionized environment,bargaining unit rules may make it difficult to require adjunct faculty to attend professionaldevelopment meetings.In 2015, Inside Higher Ed conducted a Survey of College and University Faculty WorkplaceEngagement in conjunction with researchers from Gallup [2]. The survey results found that onlyabout 34% of faculty are engaged in their workplace, meaning that they felt their opinions werevalued, their work was meaningful and rewarding, and they had good interactions with colleagues.Among the
research interests are in the flight dynamics of VTOL aircraft and UAVs and innovative teaching methods.Dr. Aaron St. Leger, U.S. Military Academy Aaron St. Leger is an Associate Professor and the Electrical Engineering Program Director at the United States Military Academy (USMA). He is also the Class of 1950 Chair of Advanced Technology. He received his BSEE, MSEE and PhD degrees at Drexel University. His research and teaching interests include alternative energy, electric power systems, modeling and controls. He has over 60 peer-review publications on these subjects. His recent work has focused on integrating alternative energy and demand response controllers to improve electric power systems for military forward
Outreach at Tufts University, where she studies teacher learning in an online professional development course on teaching and learning engineering. She earned her doctorate in Curriculum & Instruction in Science Education from the University of Colorado Boulder, as well as a Bachelor’s Degree in Molecular, Cellular, and Developmental Biology from UC Santa Cruz. Prior to graduate school, Dr. Swanson was an elementary STEM educator for a children’s science center, teaching STEM courses in both formal and informal learning environments. c American Society for Engineering Education, 2019 Transformations in elementary teachers' pedagogical reasoning: Studying teacher learning in an online
on” to an otherwise irrelevant learningexperience. In our case, a relationship is catalyzed by the experience of applying for and winningan internal grant on leadership research. Planning for the grant proposal provided the designteam—three faculty members in civil engineering and one faculty member in engineeringeducation—with an iterative process to articulate a shared vision that integrates perceived needsin the course and insights from the EL literature.Second, the module designers/adopters should carefully consider the workload added to students.The civil engineering seminar in which we are piloting the EL module is a “pass or fail” course,and students who take the course have expectations of relatively light workload. Therefore
: personalization and codification,” Journal of Engineering Design, vol. 15, pp. 307-325, Jan. 2007.[3] S. R. Rosas and J. W. Ridings, “The use of concept mapping in measurement development and evaluation: Application and future directions,” Evaluation and Program Planning, vol. 60, pp. 265-276, Feb. 2017.[4] J. P. Donnelly, “A systematic review of concept mapping dissertations,” Evaluation and Program Planning, vol. 60, pp. 186-193, Feb. 2017.[5] G. J. Hwang, F. R. Kuo, N. S. Chen and H. J. Ho, “Effects of an integrated concept mapping and web-based problem-solving approach on students' learning achievements, perceptions and cognitive loads,” Computers & Education, vol. 71, pp. 77-86, Feb. 2014.[6] J. D