careers, as engineering educators we must also concern ourselves with how studentslearn to see themselves in a global context. Students increasingly seek out short-term globalexperiences, with a majority of U.S. students now participating in programs less than 8 weeks induration [10], a trend that has sparked a corresponding focus in the international educationliterature. A short-term study abroad experience linked to a global engineering course at our owninstitution has become the fastest-growing and largest faculty-led program. Research on theRising Sophomore Abroad Program (RSAP) has accelerated in the last three years and informedcourse redesign. Rapid growth and ongoing assessment research has created an opportunity whencombined with new
higher education-workforce infrastructure for sustained, innovative Industry 4.0 workforce preparation. The factors being evaluated primarily involve objectives related to curriculum development, course integration, career pathway establishment, building partnerships and dissemination. Faculty Outcomes: To increase community college faculty members’ skills and comfort level with teaching Industry 4.0 curricula. The evaluation factors involve objectives related to the use of industry 4.0 curricula, and faculty and student satisfactions. Student Outcomes: To increase the number of workers (including underrepresented students) qualified to merge manufacturing OT & IT skills for an Industry 4.0
dynamics of parametrically-excited systems and coupled oscillators; the thermomechanics of energetic materials; additive manufacturing; and mechanics education. Dr. Rhoads is a Member of the American Society for Engineering Education (ASEE) and a Fellow of the American Society of Mechan- ical Engineers (ASME), where he serves on the Design Engineering Division’s Technical Committees on Micro/Nanosystems and Vibration and Sound, as well as the Design, Materials, and Manufacturing (DMM) Segment Leadership Team. Dr. Rhoads is a recipient of numerous research and teaching awards, including the National Science Foundation’s Faculty Early Career Development (CAREER) Award; the Purdue University School of Mechanical
Paper ID #29436Applying Artificial Intelligence to the Beer GameDr. Lisa Bosman, Purdue University-Main Campus, West Lafayette (College of Engineering) Dr. Bosman has a Ph.D. in Industrial Engineering. Her research interests include Decision Support Systems (e.g., solar energy performance, valuation, and management) and Engineering Education (en- trepreneurial mindset, energy education, interdisciplinary education, and faculty professional develop- ment). She spent the first part of her career working as a manufacturing engineer for world-class compa- nies including Harley-Davidson, John Deere, and Oshkosh Defense and
of online delivery of en- gineering content with emphasis on how the material can be modified to provide a personalized learning experience. LaMeres is also researching strategies to improve student engagement and how they can be used to improve diversity within engineering. LaMeres received his Ph.D. from the University of Col- orado, Boulder. He has published over 90 manuscripts and 5 textbooks in the area of digital systems and engineering education. LaMeres has also been granted 13 US patents in the area of digital signal propa- gation. LaMeres is a member of ASEE, a Senior Member of IEEE, and a registered Professional Engineer in the States of Montana and Colorado. Prior to joining the MSU faculty, LaMeres
witnessed drops in regards to ACT and SAT mathematics placement scores with informalobservations stemming from the need to add more sections of developmental and introductoryMathematics Courses (MAT 1030 Intro to College Mathematics and MAT 1050 CollegeAlgebra). In further exploration of the lower placement scores that were causing an increase inthe number of students requiring the introductory mathematics courses, it was noted that manystudents were just barely missing the MAT 1130 Precalculus I ACT/SAT math placement scoreused at Methodist University. In reviewing numerous incoming student transcripts, it was notedthat this trend could be due to the number, level, and consistency of mathematics coursesincoming students have completed prior to
onlycourse-related resources in a dedicated web space, but also the use of tools such as discussingboard to communicate with the instructor and other students outside of class instruction time. Incourses where collaborative learning is essential, the communication among team members alsoplays an important role in student engagement and learning.To promote better communication in class instruction in computer science and computerengineering disciplines, three aspects are especially desirable: (1) Prompt communication. Forexample, in a class exercise, if a student comes up with a good solution for codingimplementation, it is desired that the student can share the example with the instructor and otherstudents in a simple and quick way. (2) Group
. In addition, students were trained in an abbreviated version of human-centered EnterpriseDesign Thinking adopted from IBM and given a design project that incorporated Arduino kits tobe used to create design prototypes. Students had four weeks to complete the project which countedas their final. This approach aimed to demonstrate engineering principles in action so that studentscan make a better-informed major and career decision. Overall, preliminary results show thatstudents in the course are more engaged and feel they have a clearer sense of engineering.KeywordsIntroductory Engineering Course, Undergraduate Engineering, Arduino Kits, Human CenteredDesign Enterprise Design ThinkingIntroductionThe global workforce demand for highly competent
. Page 2 of 16Engineering faculty are using a variety of immersive approaches to support student learningobjectives via: Problem Based Learning (PBL), Case-Based Learning (CBL), Experientiallearning (EL), Project Based Leaning, (PjB) and Learning Factories. As an immersive examplethe tension between operating efficiency and productivity is explored in a capstonemanufacturing course. In this course management and engineering design and manufacturingstudents are challenged to design and develop product concepts. The tension between operatingefficiency and productivity is deliberately emphasized, much to the dismay of the engineeringdesign and manufacturing students. Management students deliberately press throughout thesemester for increased
pilot study, the hackathon andcapstone experiences of graduated software engineering students are compared through anadaptive expertise framework to begin exploring how hackathons can supplement academicexperiences.IntroductionEducators face a difficult problem: teaching students how to solve problems they have neverseen before. Despite their best efforts, some students express feelings of unpreparedness whenentering the workforce as an intern or new full-time hire. Students in Computer Science (CS) andSoftware Engineering have begun to leverage coding marathons known as hackathons to easethis concern, believing they are developing real world experience in the process.In the past decade, hackathons have been on the rise, and CS and software
, and issues of power in STEM education discourse. He is also an Anthropology doctoral candidate at the University of Cape Town, where he was previously awarded a Master’s degree. His dissertation research is focused on exploring the ethical becoming of architecture students within courses utilizing community-engaged pedagogies.Dr. Justin L Hess, Purdue University Dr. Justin L Hess is an assistant professor in the School of Engineering Education at Purdue University. Dr. Hess’s research interests include exploring empathy’s functional role in engineering; advancing the state of the art of engineering ethics instruction; and evaluating learning in the spaces of design, ethics, and sustainability. Justin received
recognized by U.S. Senators and Represen- tatives. Aqlan is a member of ASEE, ASQ, SME, and IEOM. He is also a senior member of IISE and has served as president of IISE Logistics and Supply Chain Division, co-founder of IISE Modeling and Simulation Division, director of IISE Young Professionals Group, founder and faculty advisor of IISE Behrend Chapter, faculty chair of IISE Northeast Conference, and track chair in IISE Annual Conference. He currently serves as IISE Vice President of Student Development and holds a seat on IISE Board of Trustees. He also serves on IISE Technical Operations Board and leads IISE Cup initiative, which is an international competition to recognize organizations for innovative and effective
field. However, the higher-level career position, such as theCISO, is fairly new and requires extensive knowledge and skills to ensure success. ManyMaster’s level programs include courses that address these skills in an attempt to provide a well-rounded program of study, but undergraduates who are in the practitioner’s world have otheralternatives to gain these skills. These individuals can gain various certifications, such as theCertified Information Systems Security Professional (CISSP) or the Certified InformationSecurity Manager (CISM). Due to a perceived gap between academics and field knowledge, itappears that academic programs may not fully consider the very specific competencies of C-Suite members (e.g. Chief Information Security
other author is a professional webdeveloper. Together, we teach a graduate course on web-application development that is centeredaround a semester-long project.When the course was first introduced in the Fall of 2016, only the professor was teaching it. Thesemester-long project – a mini e-commerce web site – was a good one. It used a model-view-controller architecture, involved both front-end and back-end development, and required aconnection to an SQL database. The implementation of that project, however, already felt a bitdated. The front end used Java more than JavaScript, and the back end used on an olderframework that concealed underlying design patterns. Since a major goal of the course was toexpose students to current technologies and