Education Training Package contains seven elements presented inFigure 2. Figure 2: Elements of the Education Training Package The course offered at Wayne State University is a four credit-hours lecture/lab course atthe senior level with five contact hours (two hours of lecture and three hours of laboratory) eachweek. Since the proposed course is a multidisciplinary one, it is then suitable for students fromboth engineering and engineering technology majors. The prerequisites for the proposed Page 26.1250.4Robotics Education Training for Manufacturing Automation course is Computer –Aided Design& Manufacturing, or
computationalanalysis were compared to students who only participated in the computational research project.The initial results indicate that there was no significant difference between the survey responsesof the two groups and that a computational CURE may have similar impact without including atraditional lab component. Further study of the project design and impact on students is plannedfor future semesters.IntroductionMost CUREs have been designed for laboratory courses or for joint lecture and laboratorycourses. This model works well for investigations in molecular biology or chemistry, but manycomputational research tools are taught in a lecture course only. There is evidence that lecturecourses can also be improved with the CURE model. The Genome Solver
the objective of increasing studentretention and overall satisfaction. Since this course is one of the first technical courses thestudents have to take, the latest approach is to incorporate hands-on laboratory experience withthe goal of getting the freshmen accustomed with novel techniques of acquiring data, buildingthe skills to analyze and investigate data using Excel software, writing a laboratory report, usinga Word processor, and comparing their results with computer simulation results using Matlab orSimulink. At the end of the course each student will have the opportunity to improve theirpresentation skills by presenting their findings in front of their peers using PowerPoint. For thefirst hands-on experiment the students used a
to both the lecture and laboratory componentsand the focus of the new course is on improving of the course. We modified the lectures to focus on thestudents’ performance and retention in calculus, we mathematics topics emphasized in the Wright Stateevaluated the effectiveness of the new course by curriculum, including trigonometry, vectors, solvinglongitudinally tracking students’ success and persistence systems of equations, and derivatives and integrals. We alsoin subsequent engineering mathematics courses. The incorporated using Matlab, with an emphasis on using it as aresults of these analyses show that students’ tool to solve engineering mathematics problems
taught many engineering courses including, but not limited to, Linear Circuit Laboratory, Electronics Laboratory, Electromagnetics, Communication Theory, and Signals and Systems. Dr. Fenner is an accomplished researcher and has published several journal articles and conference papers. She has also served as a reviewer for the IEEE Transactions on Microwave Theory and Techniques and IEEE Transactions on Antennas and Propagation. She has served as the faculty mentor for the Loyola section of the Society of Women Engineers and the Women in Engineering affiliate of the Baltimore IEEE.Dr. Peggy ONeill, Loyola University Maryland Peggy O’Neill, PhD, a professor of writing and Associate Dean of Humanities at Loyola
. PhD. Civil Engineering, Kansas State University, Manhattan, KS , May 2008. Dr. Palomo is currently a Professor in the Civil Engineering Department at California State Polytechnic University, Pomona (Cal Poly Pomona). In this position, Dr. Palomo is responsible for teaching courses such as Introduction to Civil Engineering; Hydraulics; Water and Wastewater Treatment; Groundwater Mechanics; Research Experience of Undergraduate Students; and Engineering Outreach Service Learning courses, among others. She is also a faculty advisor for the California Water Environment Association (CWEA), and Engineers Without Boarders (EWB) student chapters. Additionally, Dr. Palomo is the CE Water Analysis laboratory director and
– (i) increasednumber of historically underserved students from rural NENC who are interested in pursuingtechnical careers with DOE/national laboratories and energy-specific careers, (ii) promoteinstitutional partnerships for collaborative efforts in strengthening the future energy workforce.The renewable energy education and training supported efforts to engage underservedcommunities and foster greater inclusion of underrepresented groups in energy-related researchand the workforce.Methodology and ApproachNortheastern NC has long suffered the effects of poverty and has lacked the opportunities formost students to encounter the 21st Century workplace that is readily accessible in more urbanareas of the state. However, with the recent growth in
requiring innovative curricula, newcourses and laboratories to educate students to work in this rapidly developing industry andbecome acquainted with these new technologies. Moreover, the pace of change in engineeringeducation is accelerating due to technology advances and administrative constraints. Educatorsare modifying curriculum content to embrace technological advances in the program or courselearning outcomes. In modern world where everything changes at an extremely fast pace keepingup with technology changes is not only desirable but necessary. The renewable energy, greendesign and manufacturing are highly interdisciplinary, crossing boundaries between researchareas, making difficult to cover each of them in a single course. However, they
questions. Therefore, it is desiredto use a low cost open educational resource (OER) that can be adapted to the needs of eachcourse. One such OER is MyOpenMath, a mathematics based online tool that integrates intocommon learning management systems and is free for both faculty and students. In this paperwe discuss how this tool is currently implemented in a senior capstone design course and a unitoperations laboratory in chemical engineering. This presentation includes characteristics ofMyOpenMath, benefits for instructors, available instructor training, and benefits over usingcurrent quizzes in the Canvas LMS. Not limited to chemical engineering courses, MyOpenMathis applicable to any equation based course. This paper focuses on the faculty
engineering, incorporating laboratory experiences into traditional coursework, and bringing awareness of electrochemical engineering to chemical engineers. Biddinger’s research involves applications of green chemistry and energy utilizing electrocatalysis, batteries, and novel solvents. c American Society for Engineering Education, 2019 Program evaluation of a high school summer bridge program in chemistry and engineeringAbstractIn this paper we evaluate a summer college preparatory program for New York City high schoolstudents housed at Bronx Community College. The program was titled “Introduction to EnergyTechnology” and it focused on teaching chemistry and engineering
in Electrical Engineering Program since its inception. He developed the electronics laboratory I and II to offer hands-on experiences to online students. Dr. Liu is a member of Optical Society of America.Dr. Charles R. Westgate Sr. P.E., Binghamton University Charles Westgate is a Research Professor at Binghamton University and a former Dean of the Engineer- ing School at Binghamton. He has been deeply involved in online course instruction at Johns Hopkins, Binghamton, and Stony Brook. He conducts research in semiconductor devices and materials.Ms. Kim A. Scalzo, State University of New York, HQ Kim Scalzo is Director of the SUNY Center for Professional Development (CPD). The SUNY CPD provides professional
Paper ID #43127Board 149: Pioneering Pathways for High School Students in STEM Education(Work in Progress)Mr. Adam W Davidson, Duke University Adam is a seasoned educator and Senior Laboratory Administrator for the Electrical & Computer Engineering (ECE) department at Duke University’s Pratt School of Engineering. With a degree in Technology Education from NC State University, his journey in education began as a Technology Education teacher at Penn-Griffin School for the Arts and later as a PLTW Engineering Instructor and Fab Lab Manager at Riverside High School and Technology Equipment Coordinator for Durham Public
author (sbhattacharia@wtamu.edu, nhiranuma@wtamu.edu) AbstractWe developed curricular activities that were based on the application of a Community IceNucleation Cold Stage to teach the theory of solidification that is applicable to multidisciplinarySTEM disciplines. We adopted a freezing assay, which simulates ambient immersion freezing ina laboratory setting (i.e., freezing of ice-nucleating aerosol particles immersed in a water droplet),to provide hands-on, laboratory-based education to STEM students at a primarily undergraduateand minority-serving institute (PUI-MSI). With the freezing assay, we instructed more than 60STEM students on fundamental concepts of material and atmospheric science, such
. ©American Society for Engineering Education, 2023 Preliminary Experience and Impact of Experiment-focused Teaching Approach in a Computer Architecture Course in Computer ScienceAbstract—One of the key knowledge areas in Computer Science (CS) is Digital Logic andComputer Architecture where the learning outcome is an understanding of Boolean algebra, logicgates, registers, or arithmetic logic units, etc. and explaining how software and hardware arerelated to a computing system. Experimental Centric based Instructional Pedagogy (ECP) withportable laboratory instrumentation might provide real hands-on experience to obtain a practicalunderstanding of those concepts at a lower cost compared to virtual hands-on laboratories thatlack direct
effective teamsand establishing performance goals, and 5) Applying systems thinking to solve complexproblems. The first two modules were integrated into freshman classes, the third into asophomore class, the fourth into third year laboratory courses, and the fifth into senior designcourses. This paper describes the learning outcomes and the reinforcement activities conductedin the courses into which they were integrated for two of these modules. The findings of themodule specific surveys and the assessment results are also presented.IntroductionHaving good technical skills is necessary but insufficient by itself for an engineering graduate todevelop as a leader and innovator.1 In today’s environment, engineering graduates must alsopossess an
this paper are available forother schools that would like to use and/or modify for their own purposes.[1]IntroductionAdministrative tasks like scheduling require substantial work doing iterations of menialtabulations, analysis, and revision. Most colleges and universities have software that helps withthese tasks, but it is not well suited to a technical curriculum with extensive prerequisites,laboratory/equipment/software constraints, and faculty availability. The result is a lot of manualprocessing of spreadsheets and timetables.At Western Carolina University (WCU) there are five residential undergraduate programs thatshare a number of courses. In addition, there are two undergraduate programs that are offeredoff-campus and a residential and
that is readily accessible in more urbanareas of the state. However, with recent growth in the aviation and aerospace industry in theregion, there now exists the potential to link K-12 education to the aerospace industry. Thisinitiative adopts Roadshow-in-a-Box model, extends laboratory resources and is an importantstep towards expanding STEM literacy and career exposure for students from the mosteconomically distressed region in the State. The initiative is expected to serve over 200 schools,located within the twenty-one (21) counties surrounding ECSU, over a period of three years.This highly interactive learning lab on wheels provides students with hands-on activities,laboratory equipment, simulations, information, and rich digital media
for a greater diversity oftraining setups to be utilized in a smaller area.IntroductionIn order to effectively teach instrumentation, mechatronic and robotic courses in an Engineeringor Engineering Technology curriculum, a variety of electromechanical laboratory setups aredesirable. [1] Exposing students to an assortment of technologies is also desirable, to give themas broad an experience as is reasonable. Thus, setups containing different sensors, effectors andactuators and indicators are needed. Quite often, the cost of such laboratory setups (or trainers) ishigh, thereby challenging the desire to have numerous full setups.To broaden the students’ programming capabilities, many programs teach such courses acrossboth microcontroller and
were single-session (ca. 160 students), and therewere six to eight identical laboratory sections (ca. 20-40 students). A single instructor taught alllectures, and a common undergraduate teaching assistant workforce (10-12 individuals) sharedcoaching responsibilities across all lab sections. All IDE-related laboratory periods were held inthe program’s undergraduate makerspace [29]. Prior to the start of the IDE, in-class time wasdedicated to safety and tool competency training. In the weeks preceding the IDE, all studentswatched a video-based safety orientation, took an online safety quiz, and completed a self-pacedlaboratory experience that involved them demonstrating competencies in-person to a teachingassistant. All students viewed the same
’ knowledge and available laboratory resources. Our framework includes essentialcomponents crucial for this curriculum’s effective implementation. We identified three pivotalelements vital to its success: academic strategy, infrastructure, and research strategy. Educationalobjectives and course structure form the backbone of the curriculum, adapting specific learningoutcomes aligned with students’ engineering program levels. Courses are strategically designed tomeet these objectives, ensuring a comprehensive educational journey for the student.The infrastructure of the curriculum consists of faculty expertise, laboratory spaces, and requisiteequipment essential for hands-on laboratory assignments and project-based learning. These
Paper ID #14954Design and Development of Online Applied Thermo-Fluid Science CoursesDr. Gonca Altuger-Genc, State University of New York, Farmingdale Dr. Gonca Altuger-Genc is an Assistant Professor at State University of New York - Farmingdale State College in the Mechanical Engineering Technology Department. She is serving as the K-12 STEM Out- reach Research and Training Coordinator at Renewable Energy and Sustainability Center at Farmingdale State College. Her research interests are engineering education, self-directed lifelong learning, virtual laboratories, and decision-making framework development for design and
progresses. This places those studentsat a disadvantage relative to their peers, as they have difficulty understanding and masteringadvanced topics. The knowledge gap also often results in the repetition of topics and prolongedlab sessions, as well as more serious issues such as the mishandling of equipment.STEM instruction typically is based on verbal, deductive, reflective, and sequential learningmethods. However, studies show that students in science and engineering programs tend to dowell with visual, inductive, active, and global learning methods. With this information in mind,we developed custom pre-lab videos to address the knowledge gap. The pre-lab videosdemonstrate basic usage and implementation of laboratory equipment, software tools
the utilization of hands-on pedagogy as a means toenhance peer learning collaboration and curiosity among chemistry undergraduate students. Theresearch seeks to instill confidence and competence in students' grasp of fundamental chemicalprinciples, collaborative skills, and problem-solving abilities, while also nurturing their curiositythrough the integration of active learning techniques, laboratory experiments, and interactiveteaching methodologies. The study discusses an examination of the impact of hands-onpedagogy on students' peer learning collaboration and curiosity. The study was carried outamong undergraduate students taking foundations in chemistry, which includes engineering andother STEM majors. The study adopted a pre-post-test
major types of solar PV modules: monocrystalline, polycrystalline, and thin-filmPV. Each type converts sunlight into power at a different efficiency rate, therefore, the cost varies.The power conversion efficiency of solar energy is relatively low, at an average of about 15%,according to the U.S. National Renewable Energy Laboratory (NREL).4 If modules degrade 10 – 2018 ASEE Mid-Atlantic Spring Conference, April 6-7, 2018 – University of the District of Columbia15% after a certain time period, PV module efficiency is considered a failure.5 The performanceof PV modules over long periods of time have been unclear, therefore, estimation of accurate netefficiency that take degradation rate into account is important. The Engineering
, laboratory experiments and research instructions. For year-long exchangeprogram, students are more involved in the research work.I. INTRODUCTIONArizona State University (ASU) is a global university enjoying a top rank consistently amonguniversities in the U.S. Currently, 9,000 students representing more than 132 countriesbenefited from the international educational programs at ASU. Targeted programs aredesigned and developed appropriately at ASU to provide international students withextraordinary experience in both culture and advanced technology. As a part of ASU, Schoolof Electrical, Computer and Energy Engineering welcomes and invites international exchangestudents in both semester-long and year-long programs.Many universities have developed
and Engineering Department). Her research interests include materials science, physical chemistry and non-conventional technologies for materials and process engineering. 2018 FYEE Conference: Glassboro, New Jersey Jul 25 Work in Progress: Fundamentals of Engineering Design (FED) for Chemical Engineering 1st Year UndergraduatesThis is a work-in-progress report on continuous improvement of our first-year chemicalengineering design / laboratory course. Such courses continue a tradition identified severaldecades ago of the importance of freshman engineering experiences [1, 2]. We present amodified structure of our traditional introductory course successfully running since 2006. Thiscourse, and
. Concerns include how instructors are able to teach at a high level andconduct quality laboratory experiments remotely. Instructors were also mindful of the socialisolation of our students and the need to create a community remotely as we isolated physically.Changes to the assessment strategies also had to evolve, from the traditional multiple-choiceexam to other effective methods.KeywordsSTEM, Remote Learning, Learning Management System [LMS], Synchronous, Asynchronous.IntroductionThe rapid transition from in person to online modality was a necessary and swift response to theglobal pandemic. For educator accustomed to in-person learning the switch was jarring. A rapidtransition offered little time to thoroughly prepare for such a move. Educators
) was established to allow sharing of engineering studentsfrom different community colleges. Developed initially through a grant from the NationalScience Foundation, and subsequently supported by a US Department of Education grant, JEPcurrently has 27 partner community colleges from all over California. As a result of JEP and theengineering courses that are offered online, the number of community college students who areable to take these courses and be prepared for upper-division courses upon transfer has increased.A JEP enrollment survey shows an increase of 61.3% in engineering courses over the last fiveyears even though overall enrollment at the JEP partner institutions decreased slightly. However,courses requiring laboratory components are
Page 26.455.2 • Integrated Services Construction ManagementEach of the project-based courses was based on a model of six (6) quarter-hours of laboratorycredit total of sixteen (16) scheduled contact hours per week and an additional two (2) hours perweek to be arranged for by the instructor. Based on a ten (10) week quarter system, studentswould receive a total of one-hundred eighty (180) hours of instruction. Similar to coursesoffered through an architecture program, their concept was teach each course in a dedicatedspace equipped with models, samples, contracts, marketing documents, specifications, estimatingguides, computer references, and other tools appropriate to that construction industry sector. Inaddition, the laboratory would be
design limits, and considered the societal impacts ofthe product on toxicity, waste management, and the environment (i.e. carbon footprint and waterusage in production).4-5 We also introduced the use of a software tool (i.e. materials and processselection software) to estimate the carbon footprint, energy usage, and durability of greenplastics in laboratory modules. Even though many new inventions and advancements in materialsscience and manufacturing technology provide useful tools to adapt alternatives, (such as nanomaterials, fuel cells, solar technology, green materials, etc.), it’s critical to infuse humanisticinquiry into the instructional model for undergraduate education.1-5, 16In the GPMT laboratory, we set up a small-scale green